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ABSTRACT 

The system of clinical support is implicated by the problem of the large variance in chronic 

illness prognosis. One of the main factors contributing to the deaths of vast populations 

worldwide who have severe conditions like chronic kidney disease (CKD) is that healthcare 

systems are very concerned when this condition is diagnosed. CKD is currently regarded as 

one of the primary disorders. Most people are impacted by their erratic lifestyle. A disease of 

the chronic kidney damages the internal organs of the human body by accumulating junk and 

hazardous fluids in the blood. It usually denotes kidney damage that worsens over time until 

end-stage renal disease occurs. A healthy lifestyle can be recommended, and it can be reduced 

by early-stage prediction. A huge quantity of historical information is used in Machine 

Learning (ML), which is the technique of educating computers to make wise classification 

judgments. In our study, we provide appropriate methods and findings for this disease's precise 

and early identification to save people from this life-threatening condition. To obtain balanced 

data from imbalanced data, we build a pipeline that includes outlier elimination, data 

standardization, and imbalance handling approaches. Therefore, utilizing machine learning 

methods for analysis, including Support Vector Machine (SVM), Random Forest (RF), 

Logistic Regression (LR), k-Nearest Neighbors (k-NNs), and Stochastic Gradient Descent 

(SGD), we forecast kidney illness from balanced data. By evaluating the baseline results, we 

have seen that SVM, k-NN, and RF perform at 98% efficiency, while LR and SGD work at 

97% efficiency. Then we considered RF, SVM, and LR but not k-NN because k-NN isn’t fast 

in actual time. And, it needs to keep updated with all training data and discover neighbor nodes, 

whereas LR can efficiently extract information. And we have also been told that RF, SVM, and 

LR algorithms have better performance than others for predicting chronic kidney diseases. 

That’s why we have ensemble RF, SVM, and LR machine learning algorithms. The proposed 

ensemble RSL also shows a better result, which is 99%, that is superior to other classifiers. The 

suggested ensemble RSL makes it easier for the domain of medical analysis to predict chronic 

kidney disease than previous approaches. 
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1.1 Introduction 

A critical concern that requires protection by our population is chronic kidney disease 

(CKD). This chapter contains the background of this study, the motivation, the objectives of 

our research work, and the organization of the remaining chapters. 

 

1.2 Background 

Chronic nephritic illness (CNS) is another name for chronic kidney disease (CKD). It 

outlines restrictions that have an impact on our kidneys and lower our chance of remaining 

healthy. Anemia (low blood count), high blood pressure, brittle bones, and injury to the nerves 

are a few of the consequences to be concerned about [1]. Prior detection and therapy are usually 

necessary to prevent chronic uropathy from getting worse. As the number of people suffering 

from renal diseases rises quickly, there is a great deal of concern worldwide. Chronic Kidney 

Disease (CKD), a devastating kind of renal illness, damages the body inside by increasing 

dangerous fluids and waste in the blood. Such physical deterioration causes kidney failure, 

which ultimately results in mortality, [2]. A variety of end-stage organ failures, including 

kidney failure, are still brought on by chronic illnesses like disease of cardiovascular and 

eyesight loss. The sole artificial method for maintaining kidney function is dialysis, which is 

unpleasant, costly, and challenging. The Global Health Organization indicates that the 

likelihood of dying from renal disease is increasing yearly and affects millions of individuals 

worldwide. Due to this, it is essential to obtain a precise prognosis as soon as possible so that 

any necessary safeguards may be put in place without delay. We must first identify the disease 

pattern to reduce the serious symptoms of this harmful kidney functional issue. Many 

academics are focusing on that problem, especially on the chronic kidney disease (CKD) 

database utilizing both statistical and ML approaches. Machine learning algorithms [3] are 

effective forecasters and generalizers. Typically, an ML algorithm consists of a classifier or 

two separate algorithms running in parallel. A clinical presentation, symptoms, and blood test 

may be used to forecast kidney disease by using a decision support system that performs illness 

diagnosis. However, Machine Learning (ML) algorithms must practice on the test data first [4]. 

But ML methods also appear to be reasonably effective in making judgments in the context of 

disease automated diagnosis, [5]. Several models are used in ML, and they are applied to 

computer programs in different ways. There are a few examples of popular ML models, 

including neural networks, decision trees, Nave Bayes, and logistic regression (LR). Which 

one is utilized depends on a variety of factors, including the domain, the model's established 
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classification accuracy, and its processing power. To enhance classification accuracy, “model 

ensembles” [6] of combined models are frequently utilized in machine learning competitions. 

Using several machine learning methods, we project kidney illness in this study. This study 

includes a few classification methods that operate well on CKD, including Support Vector 

Machine (SVM), Random Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (k-

NN), and Stochastic Gradient Descent (SGD) [7]-[8]. Additionally, we have put forth an 

ensemble approach that also predicts chronic kidney disease (CKD) by combining RF, SVM, 

and LR. Finally, we compare the ensemble RSL model to other baseline models and show the 

result in the ROC curve. ROC analysis is also being utilized more and more in machine 

learning, and related applications have also appeared in economics [9]. It emphasizes the value 

of transferring information from one field to another and has mostly been used in the medical 

sector. The correlation between the rate of false positives and true positives is depicted 

graphically by the ROC [10]curve. 

 

1.3 Motivation 

Most people in Bangladesh are unaware of kidney-related issues. They are genuinely 

unsure about whether they have renal disease or not. Globally, an estimated 1.2 million 

individuals die every year from kidney related problems. Out of around 18 million individuals, 

35,000-40,000 CKD patients in Bangladesh experience renal failure each year. Kidney illness 

is more likely to affect persons over the age of 40, per a study [11]. The Kidney Prediction that 

works well has not been the subject of many studies. In addition to this, we observe that the 

emphasis in the modern world is mostly on systems of recommendation. A system must allow 

users to make decisions independently of other people to be recommended. It should be 

necessary to have categorized data to take decisions alone. In this type of research, we 

categorize data and forecast kidney disease, which has been done for all the reasons. Numerous 

studies have been done on predicting kidney disease. The methodologies used to categorize 

data on renal disease are few and few between, nevertheless. To find the greatest accuracy in 

our results, we are currently using five different classification approaches. Additionally, the 

best three classification algorithms are identified, as they can be combined to produce an 

effective ensemble ML technique for forecasting chronic kidney disease (CKD). 
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1.4 Objectives 

In order to reach the following objectives, this study creates a model to identify the 

chronic kidney disease (CKD): 

 Finding the most effective classifier for chronic kidney disease (CKD) using balanced 

data is the major objective. 

 We also propose an ensemble machine-learning model for how we can predict CKD 

more accurately. 

 To accurately forecast chronic kidney disease (CKD), we also compare the expected 

results of machine learning algorithms and ensemble RSL. 

 By contrasting these outcomes, we may also determine which model is more effective 

in accurately predicting chronic kidney disease (CKD). 

 

1.5 Thesis Outline 

The remaining portions of the thesis are arranged as follows: 

 Chapter 1: Introduction. The current situation in chronic kidney disease, the 

necessity to detect diseases mean the problem statement, motivation, and our 

contribution added. 

 Chapter 2: A literature review. Related recent work on this problem is added to this 

chapter. The techniques, related results, and analysis are also added. 

 Chapter 3: Machine learning techniques and tools. We focus on major machine 

learning techniques (like supervised, unsupervised, and reinforcement learning) and 

important tools, including theory. 

 Chapter 4: Methods and Materials. The proposed methodology is discussed here, 

with a proper diagram and related algorithms. 

 Chapter 5: Results and Discussion. The experiment performed by our methodology 

is described and analyzed with the necessary figures, diagrams, and tables. 

 Chapter 6: Conclusion and Future work. This is the ending part of our work which 

is described. It is a summary of our overall work. Future work related to our model 

is also added at the end of this section. This section represents what we do in this 

thesis. 
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LITERATURE REVIEW 
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2.1 Introduction 

We will talk about various disease prediction methods in this chapter, along with a 

pertinent literature review. 

2.2 Review of Related Works 

Researchers are particularly interested in predicting CKD. To increase classification 

accuracy, most of them use ML algorithms, conventional techniques, and ensemble techniques. 

Additionally, various hybrid methods or algorithms are used to categorize kidney illness from 

secondary sources found at UCI and Kaggle. 

 

Estimated glomerular filtration rate [eGFR] and albuminuria were two chronic kidney 

disease (CKD) indicators that were commonly assessed in hospitals and enhanced the 

identification of emergent illnesses of the heart. However, there is no consistent strategy for 

incorporating these markers into CVD risk assessment in most important clinical guidelines. 

“CKD patch” was a proven technique for calibrating and enhancing the risk predictions made 

by well-established equations using CKD measurement. Matsushita et al. [12]constructed 

multiple "CKD Patches" utilizing the Pooled Cohort Equation (PCE) using 4,143,535 adult 

data points from 35 datasets. These patches include albuminuria and eGFR. Additionally, they 

enhance the PCE-based method for evaluating cardiovascular risk, the risk of atherosclerotic 

cardiovascular illness, and projecting CVD mortality. For the cardiovascular atherosclerotic 

illness and PCE-based cardiovascular risk methods, they noticed an improvement in their 

forecasting accuracy using the chronic kidney failure validation datasets. 

 

To predict acute kidney damage, Song et al. [13] compared the effectiveness of ML 

algorithms with traditional techniques. The t-tests of post hoc techniques and One-way analysis 

of variance techniques were performed to compare the average differences in area under the 

curve between various ML methods. According to these data, ML models work equally to LR 

scenarios, although ML model performance varies and has better results. 

 

By measuring their effectiveness by their needs and awareness, machine learning 

methods for diabetes patients offer choice-based hierarchies to produce trustworthy results with 

predicted precision. A series of data-extracting pointers with regular outcomes on the generated 

model serve as the foundation for the learning scheme's actions. Analyzing 600 clinical records 

for diabetes using machine learning techniques, Balusamy, et al. [14] looked at the accuracy of 
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the initial forecasting of severe renal illnesses, which are the most devastating kidney disorders 

for people with diabetes. The categorization of the dataset was verified using choice-based 

structures and naive Bayes. Analyzing the categorizing schedule in terms of naive byes 

techniques and the structure of choice-based hierarchy depending on selection, it was possible 

to obtain a result with a high level of accuracy of 90.2%. Neural networks and information 

grouping techniques were employed to increase the accuracy of the estimation results, which 

greatly aided in achieving their objectives and provided opportunities for future investigations. 

 

Shanthakumari, et al. [15] intended to create a model named machine learning (ML) 

that considers hypertension, pharmacological data, and population prevalence projections. For 

predicting CKD, they applied ML methods with clinical evidence. A contrast analysis was 

approximated considering different indicators, such as accuracy of classification, error 

percentage, the f1-measure, and others. The simulation results showed that their suggested 

ensemble machine learning classifier, such as Ensemble SVM, identified chronic kidney illness 

from the datasets more accurately than other hybrid approaches. 

 

Ventrella, et al. [16] wanted to speed up the strategic scheduling of therapy by 

predicting how frequently a CKD patient might need to undergo dialyzation. They created a 

computer model using a supervised ML algorithm to precisely forecast the length of time a 

CKD patient will require dialysis. The test has a 94% accuracy rate, a 96% sensitivity rate, and 

a 91% specificity rate, showing that total renal disease can occur sooner rather than later. 

Nephrologists can forecast the patient's clinical course with tremendous assistance from the 

built in computational model. The model's promising outcomes, when combined with the 

physicians' expertise and knowledge. It can successfully result in more individualized treatment 

and effective management of both patient needs and facility assets. 

 

A Correlational Neural Network (CorrNN) learning algorithm that is effective in terms 

of computation and a computerized examination tool were created by Bhaskar, et al. [17] to 

identify CKD. By adding a classifier, support vector machine, their CorrNN model's prediction 

accuracy was improved. They developed a combination of models and taught and verified them 

using a unique sensing approach. To identify the illness, they kept an eye on the amount of urea 

in the measured saliva. Real-time samples were used in experiments to test the model. 

Additionally, its effectiveness was evaluated against that of other well-known data 

classification methods as well as traditional neural networks using convolution. With a success 
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rate for forecasting of 98.67%, the outcomes demonstrate that their suggested approach 

outperforms more traditional methods. 

 

A CKD dataset was classified using several classifiers by Almustafa, et al.[18]. They 

created the techniques to classify CKD datasets by using some classifiers, including Decision 

Tree (DT), Random Tree (RT), Statistical Gradient Descent (SGD), the J48, Closest Neighbor 

(k-NN), and Bayesian Naive. Furthermore, they had created a prediction model founded on a 

selection of features that could accurately predict the occurrence of CKD symptoms. The 

resultant findings demonstrated that J48 and the tree of decision techniques beat other 

techniques with 99% accuracy rates. 

 

The possibility of various algorithms for machine learning for making a swift CKD 

prognosis has been examined throughout their investigation, according to Islam et al. [19]. On 

this subject, a significant quantity of research has been done. However, by applying predictive 

modeling, they were enhancing their method. As a result, they examined how the features of 

the target class related to the data items predictive in their technique. Due to the enhanced 

assessments of qualities that may be brought about by probabilistic modeling, they can develop 

a variety of forecasting methods with the use of machine learning and probabilistic analytics. 

Beginning with 25 factors in addition to the class attribute, this study eventually reduced the 

list to 30 of those parameters, which it found to be the most effective subset for identifying 

CKD. A supervised learning setting has been used to test 12 different machine learning-based 

algorithms. The XgBoost classification technique had the strongest indicator of usefulness out 

of all 12 alternative machine learning-based predictors. And it had been examined in the 

supervised learning environment, with accuracy at 0.983, precision at 0.98, recall at 0.98, and 

an f1-score of 0.98, correspondingly. Their study found that one of the most intriguing ways to 

benefit from recent developments in machine learning and predictive modeling was to develop 

new approaches. However, when predicting the field of renal illness, they can be used to 

evaluate the accuracy. 

 

Dekka, et al. [20] included healthcare and disease diagnosis for every area of research 

that has room for Artificial Intelligence (AI). To increase public knowledge of serious health 

hazards, including chronic kidney disease (CKD), they employed machine learning techniques. 

Kidney disease prevents them from doing their normal job of filtering blood. Due to the 

potential for long-term health effects, it was difficult to predict, recognize, and prevent such a 
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condition. To address this issue early on, machine learning techniques enabled more accurate 

forecasting. When they were utilized to solve these issues, several approaches, including 

Logistic Regression, Naive Bayes, and Decision Trees named ML algorithms, were used. 

Experiments were carried out in a MATLAB environment, leveraging a large data set. By 

improving prognosis and diagnosing patients more accurately at an early stage, Logistic 

Regression suggests the possibility of decreasing mortality from chronic renal disease. 

 

By developing a website-based risk identification system, Kanda, et al. [21] evaluated 

the efficacy of a machine learning system’s capacity to anticipate these hazards in CKD 

patients. They created 16 risk evaluation machine learning methods utilizing Random Forest 

(RF), Gradient Boosting, Decision Tree, and Extreme Gradient Boosting using 22 chosen 

attributes to forecast the key outcome. These models were built using data from the electronic 

health records of CKD patients that had been continuously examined. The effectiveness of the 

models was assessed using information from a three-year perspective survey of people with 

CKD. Because they were so good at foreseeing the results, two RF models, one with 22 features 

and another using 8 features of time-series data were selected to be employed in a risk-

prediction method. The C-statistics for the 22 and 8 attribute RF models were excellent in 

verification, at 0.932 and 0.93 respectively, for the prediction of the outputs. The model of Cox 

proportional hazards using splines shows a considerable correlation between high likelihood 

and a high chance of an occurrence. Furthermore, the hazard ratio for the 22-variable model 

was 104.9, whereas the hazard ratio for the 8-variable model was 90.9, showing that patients 

with high possibilities were at greater risk than patients with low possibilities. After that, a 

website-based risk-identification system was created to employ models in hospitals. Table 1 

shows how risk categories of outcome incidents are characterized using machine learning 

algorithms [21]. 

Table 1. Based on machine learning models, outcome events of risk groups are categorized. 

Names of 

techniques 

All the time-series variables in 

the RF model 

Eight variables of time-series 

data for the RF model 

Hazard groups 

The 

group of 

high 

hazard 

The 

group of 

low 

hazard 

Value 

of p 

High 

hazard 

group 

Low 

hazard 

group 

Value 

of p 

Initial outcomes (%) 43 (2.9) 235 (0.9) <0.0001 40 (2.7) 238 (0.9) <0.0001 
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ESKD (%) 34 (2.3) 153 (0.6) <0.0001 31 (2.1) 156 (0.6) <0.0001 

Death (%) 9 (0.6) 82 (0.3) 0.099 9 (0.6) 82 (0.3) 0.009 

Follow-up period 

(days) 

710 [407, 

1038] 

901 [527, 

1052] 
<0.0001 

738.5 

[428, 

1043] 

898 [526, 

1052] 
<0.0001 

Median (interquartile range) values are displayed for continuous variables. Variables with 

categories are displayed as n (%). ESKD stands for end-stage kidney disease. 

 

The 'MedAi' smart watch-based prediction system, reported by Himi, et al. [22], was 

characterized by a variety of machine learning (ML) algorithms to identify multiple ailments, 

including cardiovascular disease, pulmonary disease, and renal failure. A "Sense O'clock" 

smartwatch prototype that has eleven sensors for tracking bodily data. The three key parts of 

their solution are an ML model to examine the data and a smartphone application platform to 

show the forecast outcomes. According to ethical principles, including getting the previous 

approval of both patients and doctors. A local hospital provided a dataset of patient physical 

characteristics. They tested several methods, including long and Short-Term Memory (LSTM), 

Statistical Vector Machine (SVM), Support Vector Regression (SVR), k closest neighbor (k-

NN), X- Gradient Boosting (XGBoost), and random forest theory (RF), to see which ML 

approach fared the best. According to the experimental dataset, the RF algorithm predicts the 

diseases with a 99.4% accuracy rate, outperforming other machine learning algorithms like 

SVM, k-NN, XGBoost, etc. And the system reports the user’s physical health and suggests 

necessary treatments, offering full-time help. It was a substantial improvement over current 

early sickness detection systems and can anticipate several health hazards before they worsen 

to the point where they are irreversible. Then, using the pertinent, pre-existing methodologies, 

they built their strategy. 

 

Debal, et al. [23] evaluated both professionals and patients, and making an early 

forecast is essential to preventing and delaying the progression of renal disease. They used 

three ML techniques, such as RF, SVM, and DT, as well as the selection feature methods 

RFECV and UFS, in their study to create the suggested models. The model was assessed using 

tenfold cross-validation methods. First, with all 19 characteristics the original datasets were 

applied to the four ML techniques. When they applied the models to the main dataset, they 

found the highest value of accuracy by using these techniques, including RF, SVM, and 
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XGBoost. And the accuracy was 99.8%, while for the five-class system, it was 82.56%. DT 

had the lowest rank when contrasted with RF. But the highest values of the f1-score were 

produced by RF. SVM with RF and RFECV created binary classes with 99.8% accuracy, and 

XGBoost produced an accuracy of up to 82.56% for five class datasets. They concluded that 

multiple-classification work was necessary for comprehending the illness’s phases and offering 

patients the medicines they needed to survive longer. An optimal subset of features was chosen 

for the models by using feature selection techniques and a supervised ML algorithm. Using 

unsupervised or deep learning algorithm models was preferable for comparing performance 

results. Experts can take decisions quickly because of this model. However, it would be better 

to develop a mobile-based system that would enable professionals to keep an eye on patients' 

health and help patients use it to learn about their diseases. 

 

For their research, Pal, et al. [24] employed ongoing renal illness attributes from the 

UCI machine computing library. Additionally, they used trees of decision, logistic regression, 

and support vector systems as three algorithms to develop a model for forecasting chronic renal 

failure. A model's performance is influenced by its sensitivity, accuracy, recall, f1-score, 

support, confusion matrix, and other performance matrices. The forecasting model was taught 

using both category and non-categorical characteristics from the attributes of CKD. When the 

base classifiers were applied, it was seen that the choice tree classifier generated better results 

with respect to accuracy, f1-score, and the precision, and recall, with values of 95.92%, 0.99, 

0.98, and 0.98. The decision tree predictor performs superiorly to logistic regression and vector 

support systems. They found that a decision tree had the best accuracy (97.23%) while using 

the packing hybrid model to increase the accuracy of fundamental classifiers. They noted that 

collaboration between patients and physicians could result in the early diagnosis of CKD and 

possibly save lives. 

 

To make successive models for forecasting the hazard of developing CKD, Dritsas, et 

al. [25] created a supervised learning technique that mainly combines probabilistic, tree, and 

collective learning-based models. According to the obtained results, the rotating Forest 

outperformed the techniques, having a 100% AUC but 99.2% precision, recall, F-measure, and 

accuracy. The suggested models performed more accurately than previous research that used a 

comparable dataset. They intend to determine whether CNN and LSTM (Long-Short-Term 

Memory) models enhance accuracy and will concentrate their study on Deep Learning 

approaches. To make the most of the possibilities of these models, they achieve two goals. The 
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previous method will employ a method for enhancing the data, including an SVR-based 

additional input multiplication approach, to enhance a small dataset before giving it to the ML 

models. For the latter, they will experiment with a sizable non-synthetic dataset right away. 

 

Singh, et al. [26] built and submitted a deep learning model for the early identification 

of chronic illness. The investigators of their research applied the Recursive pattern Elimination 

method to identify the characteristics that were essential for prediction. Serum creatinine, 

particular gravity, the protein hemoglobin albumin, cell count, and high blood pressure were 

the most important CKD symptoms. The algorithms used for segmentation received a set of 

features. Several factors, including categorization reliability, recall, precision, and f-measure, 

were used to calculate the parallelism analysis. The presented deep neuron framework 

performed better than the five previous techniques by achieving 100% accuracy, beating out 

Support Vector Machine, k-Nearest Neighbor, Logistic Regression, Random Forest, and the 

Naive Bayes technique. The accuracy rates for k-NN, SVM, Naive Bayes, RF, and LR are 

respectively 92%, 92%, 95%, 97%, and 99%. Several recent academic studies, including Ant 

Colony-based Optimization Classifier, Neural network, k-NN, Convolutional Neural 

Networks, SVM, and SAE and Softmax Regression presented, were used to compare the 

performance to their suggested model. The accuracy of the current works ranged from 85% to 

98.5%, but their proposed model achieved 100%. The recommended technique may be 

effective in the initial stage of CKD identification, according to nephrologists. The anticipated 

model had the flaw of only having been evaluated on a small number of data points. The experts 

in pathology will gather the clinical data. The effectiveness of the proposed model will be 

assessed in the feature using a significant medical database using acid-based factors, excessive 

parathyroid, hormone inorganic phosphate attention, and night urine production. Additionally, 

to acquire a more comprehensive viewpoint on the helpful criteria for CKD illness, new 

features will be employed to evaluate the prediction accuracy. Table 2, [13] depicts the 

Examine the characteristics of various diseases using a range of machine learning (ML) 

classifiers. 
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Table 2. Examine the characteristics of various diseases using a range of machine learning 

(ML) classifiers. 

Researchers Year 
Usable 

data (N) 

Type of 

model 

Qualities of 

the subject 

Findings (best 

models/predictors) 

R.J. Kate et 

al. [27] 
2016 25,521 

LR, 

BN, 

ENS, 

RF, 

SVM 

Inpatient care 

(>60, y. o.) 

AKI prediction by 

using the best ENS.  

S. E. Davis 

et al. [28] 
2017 170,675 

RF, 

BN, 

ANN, 

LR 

Every 

admittance 

Both the ANN and 

the RF models were 

better antiemetic.  

P. Cheng et 

al. [29] 
2017 48,955 

AB, 

RF, 

LR 

visits with 

patients 

The most effective 

model was RF. 

J. L. 

Koyner et 

al. [30] 

2018 121,158 GB 

Full-age 

patients that 

are inpatients 

Lower AKI stage 

prediction causes a 

decline in extreme 

GB performance.     

H. C. Lee et 

al. [31] 
2018 2,010 

ANN, 

LR, 

GB, 

DT, 

SVM, 

RF 

Surgery of 

heart 

The GB model 

performed better than 

expected.  

N. Park et 

al. [32] 
2018 21,022 

RF  

and LR 
Crab 

For predicting AKI, 

RF has higher 

accuracy, sensitivity.  
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L. Adhikari 

et al. [33] 
2019 2,911 RF 

An anxious 

surgical 

process 

The RF techniques 

containing both 

interop and preop 

parameters scored 

better. 

C. Chiofolo 

et al. [34] 
2019 6,530 RF 

ICU for 

health and 

surgery 

The RF technique 

works better for 

ongoing AKI 

population projection 

in the ICU. 

M. Flechet 

et al. [35] 
2019 252 RF 

Seriously ill 

in the ICU 

With less 

overestimation of the 

risk of AKI, the RF 

model was assessed 

similarly to 

physicians in AKI 

forecasts.  

J. He et al. 

[36] 
2019 76,957 

ENS, 

RF, 

BN, 

LR, 

Visits with 

patients 

The best performance 

was displayed by 

ENS. 

J. Parreco et 

al. [37] 

2019 

 

151,098 

 

GB, 

ANN, 

LR 

ICU 

admissions 

The efficiency of GB 

was superior. 

M. Sun et 

al. [38] 
2019 16,558 

LR, 

ANN, 

BN, 

RF, 

SVM 

Critical care 

unit (ICU) 

The best results were 

achieved by SVM 

and LR. 
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Cronin et 

al. [39] 
2015 1,620,898 

The RF 

and LR 

 

Visiting 

patients in 

hospitals 

Performance on the 

models was 

comparable. 

Thottakkara 

et al. [40] 
2016 50,318 

LR, 

BN, 

SVM 

Any 

significant 

surgery 

More effectively than 

BN were LR and 

SVM. 

N.K. Tran 

et al. [41] 
2019 50 KNN Burn 

When used to 

forecast AKI in burn 

victims, KNN is 

excellent. 

Z. Zhang et 

al. [42] 
2019 6,682 

LR, 

GB 

Intensive care 

unit 

admittance 

When predicting 

whether an AKI will 

respond to volume 

changes or not, 

Extreme GB 

outperformed LR. 

 

Ghosh, et al. [43] said that one of the biggest issues with mortality rates in the clinical 

sector today is kidney illness a slow-developing disease that is often discovered too late. It was 

a serious concern that every year, a large number of people endured it because of the absence 

of quick detection tools and sufficient ambition. However, prompt disease detection in the 

earliest stages can save patients’ lives. A trustworthy dataset can also help a machine learning 

algorithms evaluation procedure identify this dangerous diseases stage much more quickly. 

The entire study was executed using four trustworthy methods: hereafter AB (AdaBoost), 

hereafter SVM, hereafter LDA (Linear Discriminant Analysis), and hereafter GB (Gradient 

Boosting). These approaches were chosen because they are well-known and have a track record 

of providing reliable results. On a dataset available publicly in the UCI machine learning 

repository, these techniques were put into practice. GB classifiers produced results with a 

predictably high accuracy of 99.80%. Additionally, a number of indicators of performance 

assessment were shown to show the successful results. Finally, these standards can be 

employed to select the most effective and optimal methods for the desired job. 
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A stunning 63,538 cases of chronic kidney disease (CKD) have been identified, 

according to an analysis of Indian health records by Gudeti, et al. [44]. Nephropathy in humans 

often appeared between the ages of 48 and 70. Men had a greater frequency of CKD than 

women did. Unluckily, since 2015, India has slipped among the top 17 countries for CKD. A 

state in which the function of the excretory organs gradually deteriorated over time. Early 

sickness detection and effective treatment may help keep this dreadful disease at bay. Machine 

learning (ML) is being used in real-world applications throughout many sectors, including 

fraud detection and the interpretation of medical research findings. The forecasting of chronic 

diseases uses a variety of ML techniques. The main target was to compare how different 

machine learning algorithms perform, which were mainly focused on accuracy. Recode had 

been praised in their study’s analysis of performance. Their study's main objective was to use 

an analysis of the chronic renal disease sample to categorize those with CKD and non-CKD. 

The benefit of this technique was that it categorized a larger group of victims more quickly, 

and the prediction procedure took considerably less time, allowing doctors to treat those 

suffering from CKD as soon as feasible. Because the dataset used in this research was so tiny, 

with just 400 samples, it would have been preferable to deal with greater amounts of data 

moving forward or to contrast the outcomes of this database with those of another database 

with similar features. Additionally, using the appropriate information, it was tried to determine 

whether a person with this syndrome had a higher likelihood of developing chronic risk 

syndromes. 

 

Devika, et al. [45] , have previously seen programs for system learning and statistics 

mining in the medical sector. A novel selection aid technique was employed in their 

investigation to forecast the occurrence of CKD.  Even though their models were also effective 

at predicting other illnesses. In their study, they used distinct classifiers to predict chronic 

kidney disease, and it concluded with a comparison of the classifiers' overall performance. The 

analysis showed that the most effective classifiers were Naive Bayes, Random Forest, and k-

NN. Regarding the precision of the price of CKD prediction, the classifier using Random 

Forests fared better than the alternative. Different workable evolutionary algorithms could be 

applied to enhance the execution of the expected methods. Here, Random Forest, k-NN, and 

Naive Bayes techniques were used to find CKD. They also compared the efficiency of the old 

classification algorithms to other ones now in use. Identification of CKD quickly is important 

for the timely treatment of those who are ill and for preventing the condition from worsening. 

The medical zone required early disease diagnosis and prompt treatment.  
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Numerous renal problems have been reported by people, with chronic kidney illness 

being one of the main causes, according to Baidya et al. [46] . It was important to diagnose 

CKD as soon as possible to stop renal disease from worsening while it was still in its initial 

phases. The disease can currently be detected earlier than in any other way by doctors using 

ML classifier algorithms. In their research, they suggested a method for promptly identifying 

CKD illness by considering a dataset of the patient's medical history and eight different ML 

algorithms. A dataset provided by the medical center that covered roughly two months of that 

time was used to evaluate the risk of chronic renal condition. They also utilized several 

classifiers, such as the EXT (Extra Tree), ADB (AdaBoost), k-NNs (k-Nearest Neighbors), GB 

(Gradient Boosting), XGB (Extreme Gradient Boosting), DT (Decision Tree), GNB (Gaussian 

Nave Bayes), and RF (Random Forest), to provide the highest identification outcomes. After 

preparing the data to provide an accurate output, they applied ML algorithms and compared 

their results. Statistical approaches such as the f1-score, precision, accuracy, recall, and AUC 

score were utilized to evaluate the results. The results of the investigation demonstrate that k-

NNs (k-Nearest Neighbors) and EXT (Extra Tree) approaches surpassed other approaches in 

receiving an accuracy of 99% prior to GB (Gradient Boost), which reached 98% at the time. 

 

Basak et al. [47] determined approximately 422 million people worldwide have 

diabetes as of today, which contained 30% having type 1 (adolescent onset) and 10 to 40% 

having type 2 (adult onset), both of which might eventually result in kidney impairment. It was 

clear that adult-onset damage from chronic kidney disease (CKD) can be reduced with early 

identification. The effectiveness of five distinct classifiers involving NB (Naive Bayes), IBK 

(Instance-Based Learning), RF (Random Forest), DS (Decision Stump), and DT-J48 (Decision 

Tree-J48) were compared to anticipate CKD in individuals with diabetes simply using a urinary 

examination. Of all the classifiers, the IBK technique delivered the greatest outcome. People 

with diabetes will be able to determine if they have CKD or not by comparing several 

algorithms.  

 

Chen, et al. [48] developed a simple ultrasonography imaging technology that was 

utilized for the risk of patients with CKD as an additional clinical approach to detect the disease 

of the chronic renal failure at its initial stage. They developed an identification system using 

image analysis methods and ML strategies to identify chronic renal failure. Support-vector 

machine approaches and decisive area-proportional and textural aspects were used for effective 

analysis. Several clustered groups of CKD victims were evaluated and compared using their 
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approximated rates of glomerular filtration. The recommended approach may be used in their 

study as additional proof to help distinguish between distinct clinical diagnoses through the 

observations of developing abnormalities via ultrasound images. 

 

Biomarker researchers Soreide, et al. [49], enhanced their research and result 

presentation by using ROC curves properly. The best classification criteria were found using 

ROC curves. Confounding brought on by shifting criteria and subjective judgments was 

avoided through ROC curves. Its result should always be viewed in context. A most effective 

technique does not ensure the final medical results when unique statistical precautions and 

procedures are needed. Table 3 contrasts the ROC research strategies for past and present 

studies [50].  

Table 3. ROC study designs for future and past investigations. 

Features of the Study Future investigation Past investigation 

References type 

Allows the study process to 

be applied evenly across all 

disciplines to the 

corresponding criterion. 

Since the reference to the 

standard was previously in 

use, it is possible that its 

performance and perception 

are commonly non-

standardized. Bias might 

enter a study when some 

subjects are not exposed to 

the reference standard. 

Subjects for studies 

Makes sure there are enough 

participants with and without 

the condition, but significant 

numbers are needed to 

provide a representative 

sample that can be 

generalized. 

Gives the researchers the 

option to select subjects for 

study who will be present in 

a large number of different 

situations. 

Analysis readers 

Need a clinical reader to 

examine the data 

immediately, while many 

readers commonly do so 

Lends itself to being 

consistently understood by 

many readers who are not 

involved in the patient's 
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after the fact. treatment. 

Measures of results 

For subgroup analysis, there 

is typically more patient data 

available. Accuracy of 

diagnostic tests, impact of 

medical decisions on patient 

care, and results for patients. 

Accurate tests for diagnosis 

Competence 

Finding enough topics 

usually takes a lot of effort 

and money. 

Because chart reviews are 

used to identify subjects, has 

a tendency to be significantly 

shorter as well as less 

expensive. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

MACHINE LEARNING TECHNIQUES AND TOOLS 
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3.1 Introduction 

Methods utilizing machine learning have become widely employed in various 

applications recently, including speech and picture identification, natural language processing, 

and predictive analytics for kidney disorders. We cover the fundamentals of machine learning 

(ML) in this chapter, as well as the various ML methods, such as supervised learning, 

unsupervised learning, and reinforcement learning, as well as the field of ML tools. 

 

3.2 Machine Learning (ML) 

Humanity faces new challenges in the digital age. Every second, massive amounts of 

data are generated by the internet, smart devices, and ever-advancing technology. In recent 

times, companies, institutions, scientists, and academics have been looking for new methods 

and technologies to use this data for a variety of objectives, including detection, recognition, 

analysis, evidence identification, and recommendations. Almost every industry now uses 

Artificial Intelligence (AI) to improve its processes and methods, such as medicine, 

engineering, finance, and manufacturing. One of these trends is machine learning in AI and 

computer science, which has become a focus for technology specialists. Author Samuel 

invented the term “Machine Learning” in 1959, and it has been explored and modified by 

various academics since then. A branch of artificial intelligence known as Machine Learning 

(ML). It employs statistical techniques to let computers learn from data in real time, without 

prior guidance or predefined procedures [51]. ML accomplishes this by discovering patterns 

and relationships between data and events using computer algorithms. These algorithms gain 

knowledge from the datasets to anticipate the outcomes of similar datasets. Unlike traditional 

applications that operate within strict, pre-defined guidelines, the capacity of ML algorithms 

to grow and advance with time. Making it possible to build data-driven applications like 

computer vision or email filtering, which would be almost impossible with traditional 

programming methods. ML has three main categories:  

• Supervised • Unsupervised • Reinforcement 

 

3.2.1 Supervised Learning 

A division of artificial intelligence and machine learning is supervised learning. The 

phrase “supervised machine learning” is another name for it. And it is determined by its 

capacity to develop algorithms that correctly classify data and forecast consequences. 

Additionally, it trains computers how to use the information at hand to uncover hidden insights. 

A supervised learning technique can be grouped into two different strategies, such as 
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classification and regression [52]. A concern with these algorithms is that they only work with 

labeled data, and acquiring data for learning can be expensive. There have been several 

supervised algorithms investigated, and each has merits and flaws of its own. In ML, selecting 

the appropriate method is essential because no single algorithm is best for all problems. Among 

the greatest number of popular supervised algorithms are: 

• Support Vector Machines (SVM) 

• Random forest (RF) 

• Logistic regression (LR) 

• Linear regression 

• Naive Bayes (NB) 

• Decision trees (DT) 

• K-Nearest Neighbor (k-NN) 

• Neural Network 

 

3.2.2 Unsupervised Learning 

In contrast to supervised machine learning, unsupervised learning uses raw data [53]. 

As an alternative to all of this, we use unlabeled input data that is not segmented based on 

different attributes and does not also include associated outputs for supervision. Later, the 

machine learning model receives the unlabeled input data to finish the training phase. It can be 

categorized into clustering and association problems. 

Clustering: This type of task involves grouping similar data points together, such as grouping 

customers based on their purchasing behavior.  

Association: The algorithm looks for underlying patterns and linkages in the data, such as the 

correlation between buying shirts and pants. Algorithms like K-means clustering, and the 

priority association algorithm are two examples of unsupervised learning. 

 

3.2.3 Reinforcement Learning 

Machine learning models are trained via Reinforcement learning to make a series of 

judgments [54]. The agent acquires the capacity to carry out a task in a potentially complex 

and unpredictable environment. Reinforcement learning places artificial intelligence in an 

environment analogous to competition. The computer employs a method involving 

experimentation and failure to find a solution. The actions artificial intelligence takes to get the 

machine to accomplish what the developer wants are honored or penalized. 
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3.3 Important tools 

In this study, we employed various tools and applications in the creation of models and 

experiments, like most research and studies. Several tools are necessary for these types of 

studies, such as the programming language Python, which was utilized by the author to develop 

the model. For chronic kidney illness prediction, a huge amount of data has also been used for 

training purposes. Additionally, several Python libraries deemed necessary or helpful in 

creating machine learning models were utilized. All the tools that were used in the thesis have 

also been described. 

Python:  

A versatile programming language is Python created by Guido van Rossum with the 

goal of making programming accessible to everyone. Its simplicity, sensitivity to spacing, and 

ease of use have made it a popular choice, especially for those without a programming 

background. Due to its effective and user-friendly libraries that accelerate and simplify 

development, it has gained tremendous popularity in the disciplines of artificial intelligence 

and machine learning over the years. In this thesis, the author chose Python as the programming 

language for model development due to their knowledge and interest in the language. 

Pandas: 

Pandas is a free software tool that enables effective computation with arrays and 

matrices in two dimensions. It contains a wide range of functions that make working with this 

type of data more straightforward. When working with large amounts of data, arrays are a vital 

tool for data specialists since they can be utilized to speed up operations and increase efficiency. 

Its memory size is larger than NumPy, and it can also contain dissimilar data types. It is 

particularly useful for detection and forecasting tasks, where models need to be optimized to 

perform quickly. 

Matplotlib and Seaborn: 

Matplotlib and Seaborn are popular plotting tools used to create a variety of graphs and 

figures. Its ease of use means that it can produce high-quality plots and figures with just a few 

lines of code, making it a go-to choose for data visualization. Pandas and NumPy are used by 

Matplotlib to plot a variety of graphs, but Seaborn is an expanded version of Matplotlib that 

employs Matplotlib in addition to Pandas and NumPy. That’s why Seaborn has been used in 

this thesis to extract color features and create histograms. 
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Jupiter Notebook:  

The Jupiter Notebook software enables the creation and editing of documents that show 

a Python program's input and output. These files can be shared with others after being saved. 

By default, Python and R languages are supported, but Notebook can run a variety of additional 

kernel environments with some customization. 

Computer:  

The following features are present in the computer used to train and test the models:  

Device: HP ProBook G2-450  

Memory: 4 GB RAM  

CPU: Core i5 Quad and Core  

Graphics: Intel HD 2.20 GB"  

System type: 64-bit operating system
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4.1 Introduction 

 The overall workflow of this study mainly focuses in this chapter. A diagram that 

summarizes the complete methodology is included, along with information on the dataset, data 

pretreatment procedures, correlation between the variables, equations, an explanation of the 

algorithms, and performance measurement tools. This chapter shows a clear scenario of our 

work. 

4.2 Proposed Mechanism 

A prediction model is used to forecast chronic kidney disease and identify people with 

the condition. Many academics have been interested in studying chronic kidney disease 

datasets to create an effective algorithm to support healthcare professionals in keeping track of 

probable CKD patients. A variety of trustworthy and effective models to help healthcare 

professionals have been produced by machine learning (ML) algorithms. Some techniques in 

ML have been utilized in various disorders relevant to healthcare. Five methods of machine 

learning (ML), namely Support Vector Machine (SVM), Random Forest (RF), Logistic 

Regression (LR), k-Nearest Neighbors (k-NN), and Stochastic Gradient Descent (SGD), have 

been used in this work. In addition, we developed an ensemble (RSL) including RF, SVM, and 

LR. Firstly, we have created a library function and have also loaded the data by using a method 

named Pandas to predict chronic kidney diseases. We also applied the SMOTE Tomek 

technique to the imbalanced data and produced balanced data for improving the accuracy level 

of prediction.   

 

 

Figure 1. The block diagram for our proposed technique 

 

k-NN 

SGD 
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The dataset is randomly separated into testing and training segments after any outliers 

have been removed and the normalizing technique has been applied. The testing data is then 

utilized to provide the expected values after the models have been trained to use the training 

data. Although the outcomes are good, the level of precision of the algorithms could yet be 

improved. This improves the model's overall performance by allowing it to make predictions 

that are more reliable. 

The total process is broken into numerous subsections, from data preprocessing to final 

assessment. All the subsections are explained below, while figure 1 depicts the diagram of our 

suggested technique. The complete data analysis was divided into two primary stages after the 

data preparation. On balanced data, CKD was forecast through several machine learning 

techniques. The training and testing set in each dataset are randomly split (in an 80:20 ratio), 

and each set is used individually for analysis. To measure the performances of the algorithms, 

this study utilizes the f1-score, the accuracy, the recall, the precision, the Cohen Kappa, and 

the ROC score. The bar chart displays the outcomes, while the ROC curve depicts the 

algorithms' performance. 

 

4.3 Description of Data Sets 

The dataset for chronic kidney disease was gathered from UCI [55] and used these in 

this investigation. A total of 400 instances made up the CKD dataset, which was chosen over 

two months (samples). Each instance had 24 attributes and one class attribute, of which 11 

were numerical and 14 were nominal, as shown in table 4. After collecting the data, the library 

function is created and imports these data using the Pandas method. 

Table 4. Variables with details and data types of the variables 

Serial Variable Full Name Type Values 

1.  age age numerical age in years 

2.  al albumin nominal  al - (0,1,2,3,4,5) 

3.  sg specific gravity  nominal 
sg - 

(1.005,1.010,1.015,1.020,1.025) 

4.  bp blood pressure numerical bp in mm/hg 

5.  su sugar nominal su - (0,1,2,3,4,5) 

6.  rbc red blood cells nominal rbc - (normal, abnormal) 

7.  pc pus cell nominal pc - (normal, abnormal) 
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8.  pcc pus cell clumps nominal pcc - (present, notpresent) 

9.  ba bacteria nominal ba - (present, notpresent) 

10.  bgr 
blood glucose 

random 
numerical bgr in mgs/dl 

11.  bu blood urea numerical bu in mgs/dl 

12.  sc serum creatinine numerical sc in mgs/dl 

13.  sod sodium numerical sod in meq/l 

14.  pot potassium numerical pot in meq/l 

15.  hemo hemoglobin numerical hemo in gms 

16.  pcv packed cell volume numerical ____ 

17.  wc 
white blood cell 

count 
numerical wc in cells/cumm 

18.  rc red blood cell count numerical rc in millions/cmm 

19.  htn hypertension nominal htn - (yes, no) 

20.  dm diabetes mellitus nominal dm - (yes, no) 

21.  cad 
coronary artery 

disease 
nominal cad - (yes, no) 

22.  appet appetite nominal appet - (good, poor) 

23.  pe pedal edema nominal pe - (yes, no) 

24.  ane anemia nominal ane - (yes, no) 

25.  class class nominal class - (ckd, notckd) 
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4.4 Correlation among the variables 

The correlation test is a popularly used statistical technique and provides the foundation 

for numerous applications, including the analysis of data for exploration, structural estimation, 

data science, etc. [56]. There are many kinds of correlation [57], which are shown in Table 5.  

 

Table 5. Different classifications of correlation for entire variables 

Different classifications of correlations 

Pearson’s correlation Point-Biserial and biserial correlation 

Kendall’s rank correlation Polychoric correlation 

Bit_Weight mid correlation Tetrachoric correlation 

Percentage bend correlation Partial correlation 

Distance correlation Multilevel correlation 

 

In this paper, we use Pearson’s Correlation because the variables are normally 

distributed, their relationship is linear, and both variables are quantitative [58]. 

4.4.1 Pearson’s Correlation 

A statistical technique called Pearson's correlation is applied to determine the graphical 

relationship within the two parameters, x and y. It has a range of -1 to 1+. A correlation can be 

expressed as +1 for a positive correlation, -1 for a negative correlation, or 0 for none at all. 

Figure 2 displays correlations that are positive, negative, and zero. We are aware that both 

variables x and y are continuous. The following equation can be used to get the Pearson's 

correlation [59] coefficient: 

Px,y =
Cov(X, Y)

dxdy
 … … … … … … … … … … … … . . (1) 

From this equation, we know that Cov is the covariance in this instance, and dx and dy are the 

respective x-axis and y-axis standard deviations.  

 

 

https://www.scribbr.com/statistics/normal-distribution/
https://www.scribbr.com/statistics/normal-distribution/
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Figure 2. Pearson’s correlation with positive, negative, and zero correlation 

 

4.4.2 Correlation heatmap 

An illustration of the strength of correlations between numerical data is a correlation 

heatmap. To determine which variables are correlated with one another and the significance of 

this association, correlation graphs are utilized. A column usually represents one of the many 

numerical variables, and the rows show the relationship between each set of variables. Positive 

values carry a dynamic relationship, while negative values carry a weak relationship. The 

values in the cells illustrate the quality of the relationship. To find potential connections among 

variables and measure how potential these connections are, we can use correlation heatmaps. 

Correlation plots are also used to find outliers and determine both linear and nonlinear 

correlations [86]. The scheme of colors in the cells makes it simple to see the connections 

between variables briefly. Finding both linear and nonlinear associations between data is 

another purpose for correlation heatmaps. To comprehend the linear connection among these 

variables in the chronic kidney diseases (CKD) dataset, a correlation heatmap is built here. A 

matrix known as a correlation matrix is created by the set of correlation values between pairs 

of its characteristics [60]. Finding a correlation between the independent variables is very 

important. We know that if we feed the model incorrect data, the weight's value will change, 

and the model won't produce the desired results if the independent variables are correlated. 

Here, we use Pearson’s correlation techniques to plot the correlation between the variables. So, 

we remember that a strong correlation between an independent variable and any other 

independent variable or dependent variable is not an issue and has no bearing on the algorithm. 

But the correlation between the independent variables is a problem that affects the algorithm.  
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Figure 3. Correlation Heatmap for Chronic Kidney Diseases (CKD) 

Figure 3 is shown in the diagram of correlation. There is a scale that is on the right side 

of the diagram, and the lighter the color, the more correlation there is. The correlation of 1 is 

happens when we find the same column. In this figure, for example, we see that the bottom age 

and left age are in the same column, and the correlation is coming in at 1, while rest of the 

correlation is not high. Instead of being a correlation, the id column is not significant in this 

model because it is just unique ids. And rest every other place where there is no correlation, 

then we have to drop this. So, we can now go ahead and finalize the data. 

 

4.5 Data preprocessing techniques 

A technique for transforming unprocessed data into a complete form is known as data 

preparation. The dataset is preprocessed to identify outliers, missing values, noisy values of 

data, and other irregularities before running it. The following is a description of several 

common data preparation techniques used in this investigation. 

4.5.1 Outlier Detection   

Outlier detection is used to correctly remove unnecessary observations from the 

datasets [61]. By detecting faults, removing their harmful impacts, and using other techniques, 

it can clean up data before analyzing it. Extreme values that are positioned far from the feature’s 

central tendency are considered outliers. Data input errors, often known as noise in the data, 

are the cause of illegal outliers, [62]. When dealing with outliers, Clinical data is unable to be 

altered like other data since these outliers may be real (valid) or significant. To determine if an  
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Figure 4. Outlier detection and removing using IQR 

outlier is realistic or not, each one that is found in the CKD dataset is examined, [63]. Extreme 

data points that fall outside of the permissible range in terms of medicine have been handled as 

missing data and then adjusted. In figure 4, we have discussed the technique, which is outlier 

detection and removal technique using an Inter Quartile Range (IQR) [64]. The dataset is 

divided into four equal quartiles, or Q1, Q2, Q3, and Q4, to calculate the IQR, which measures 

volatility. The first quartile (Q1) separates the 25% of data with the smallest range from the 

other 75% with greater ranges. The Third Quartile (Q3) separates the lowest 25% of data from 

the highest 75% of data. IQR stands for the distinction between the first and third quartiles of 

a population. So, 

IQR =  Q3 − Q1 … … … … … … … … … … … … . (2) 

The lower limit = Q1-1.5*IQR……….…..….. (3) 

The upper limit = Q3+1.5*IQR………..…….. (4) 

Any values in the dataset that are outside of the upper and lower limits (Q3+1.5*IQR and Q1-

1.5*IQR, respectively) are referred to as outliers. 

 

4.5.2 Normalization 

The normalization of data is a crucial step in machine learning that helps to ensure a 

more precise forecast. The greatest datasets are created by combining and analyzing data from 

many sources. This method’s primary benefits are monetary savings, space investments, and 

accuracy enhancements [65]. Every dataset does not need to be normalized. Min-max 

normalization is only used when there are outliers. Data normalization has the benefit of 

making features easier to compare because every feature will have the same scale, according 

to [66]. So, whenever we apply features with different scales, the normalization step will be 
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used. A scale with the values [0, 1] is an example of a numerical property that has been 

normalized. The MinMaxScaler from the sklearn library must be imported and applied to our 

dataset to normalize our data. This can be done using the following formula [67]: 

Xnormalized =
X − Xmin

Xmax  − Xmin 
… … … … … … … … … (5) 

First, we determine the dataset’s minimum and maximum values, which are represented by the 

Xmin and Xmax respectively. After that, measure the dataset’s range with the smallest value 

subtracted from the highest value, which is represented by the formularange = Xmax  −  Xmin. 

The next step is to subtract the variable's minimum value, (X − Xmin), in order to calculate how 

much more data in the variable needs to be normalized from it. Finally, as indicated in equation 

5, the method for determining the normalization of the variable x is derived by dividing 

(X − Xmin) and (Xmax  −  Xmin). 

 

4.5.3 Imbalance Data Handling Technique  

In the analysis of medical records, data imbalance is a major problem. Clinical datasets 

frequently have unbalanced class labels [68]. The classical classifiers may be significantly 

affected by the data’s imbalanced class arrangement. This is so that they can maximize 

accuracy overall without considering how each class is distributed relatively. When the 

categorization classes of a set of data are not nearly comparable, the dataset is said to be 

unbalanced. To address the imbalance issue, we use Tomek and SMOTE. The SMOTE 

approach is used to oversample the minority group, and once examples of under-sampling from 

the majority groups are found and eliminated from Tomek, a balanced distribution is ensured. 

 

Oversampling: 

Oversampling is utilized to enlarge the minority class through arbitrary duplication. 

Once the instances of the majority and minority classes are equal, this process is repeated 

(Figure 5). 
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Figure 5. Imbalance Data handling technique (Oversampling) 

 

Under-sampling: 

The majority class is reduced by under-sampling, which involves randomly removing 

members of the majority class. This is carried out until the instances of the majority and 

minority classes are equal (Figure 6). 

 

Figure 6. Imbalance Data handling technique (Under-sampling)  
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4.6 Description of the algorithm 

The machine is educated to manage the data more effectively by using Machine 

Learning (ML). Sometimes, even after seeing the data, we are unable to figure out what 

information it contains. For a number of uses, such as analytics for prediction, processing of 

images, and statistical extraction, we use ML methods and their algorithms [69]. The major 

advantage of ML is that an algorithm may function independently once it learns how to apply 

data. Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), k-

Nearest Neighbor (k-NN), and Stochastic Gradient Descent (SGD) are five ML methods that 

we use in this investigation. The following is a summary of each ML method: 

4.6.1 Support Vector Machine (SVM) 

The most popular Supervised Learning technique is Support Vector Machine (SVM), 

which is classified for the problems of Classification and Regression. Nevertheless, it is utilized 

primarily to solve categorization problems in the field of machine learning. The goal of the 

SVM [70] is to construct the optimal path or decision-making threshold. It is capable of 

classifying space with n dimensions, enabling us to swiftly classify a fresh data item in the 

appropriate region. In figure 7, the term "hyperplane" refers to the best-option area. It finds the 

most severe vectors and places to build a hyperplane. The data items or vectors that are nearest 

to the hyperplane and have the biggest impact on the position in which the hyperplane is 

situated are known as support vectors. As a result of these vectors supporting the so-called 

support vector hyperplane, the technique is known as a Support Vector Machine (SVM).  

 

Figure 7. Support Vector Machine (SVM) with margin and hyperplane 
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The highest margin, or the greatest possible separation among the data items, is continuously 

employed to form a hyperplane. There are two different forms of SVM: 

Linear SVM: When two distinct categories can be distinguished from an array of data 

employing only one direct path, it is called linearly distinct and is utilized in linear SVM. 

Afterward, such data are known as linearly separable data, and a classifier named the Linear 

SVM classifier is used. 

Non-linear SVM: Non-Linear SVM is employed to analyze data that cannot be linearly 

separated. According to this definition, a database is considered non-linear when it is not 

classifiable using a direct path and a non-linear SVM classification algorithm is used to 

categorize it. 

4.6.2 Random Forest (RF) 

RF is a classification algorithm that keeps track of a variety of decision chains or 

trees on several subgroups of a specific dataset and uses the median to improve the dataset's 

productivity [71]. Instead of taking into account a single decision tree, RF predicts from every 

branch of the tree and projects the final outcomes depending on the number of ballots or 

choices. The factors are ranked in order of importance for the categorization problem. A greater 

number of trees in a forest improves accuracy, which reduces the harmful effects of excess 

fitting. An ensemble learning technique is the foundation of a method for merging multiple 

classifiers to deal with complex issues and increase the efficiency of the models. The most 

preferable number of trees in the natural environment minimizes overfitting problems and 

improves accuracy. Figure 8 of the following diagram shows how the RF algorithm [72] works: 

 

Figure 8. Working flow diagram of Random Forest (RF) 
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A two-phase process is used by an RF classifier. The Random Forest (RF) is created in the first 

phase by combining N decision trees. And the second page is given prediction accuracy by 

using these decision trees. 

4.6.3 Logistic Regression (LR) 

Observations are stored into discrete classes using the Logistic Regression (LR) method 

for classification. In general, there are many similarities between linear Regression and Logistic 

Regression (LR). While LR is used for applications requiring categorization, linear regression 

techniques are used to forecast values. The fitting of an S-shaped logistic function indicates 

two distinct values (0 or 1) rather than a regression curve in Logistic Regression (LR). The 

most effective variables used for classification can be basically completed using LR, which is 

frequently utilized to separate the observations using different types of data. The logistic 

regression technique [73] is shown in figure 9. Logistic Regression (LR) is calculated using the 

following formula [73]: 

 

y =
e(bo+b1X)

1 + e(bo+b1X)
… … … … … … … … … … … … … … . . (6) 

Where, 

x = the input value  

y = the predicted output 

bo = bias or intercept term 

b1 = coefficient for input (x) 

 

Figure 9. Logistic Regression (LR) technique 
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Figure 10. The machine learning technique k-Nearest Neighbor (k-NN) 

 

4.6.4 k-Nearest Neighbors (k-NN) 

A classification technique known as the k-Nearest Neighbors (k-NNs) is the most 

significant categorization strategy in machine learning. It is a part of the supervised learning 

field and performs several tasks such as identification of patterns, manufacturing, and 

detection of attacks [74]. All applicants are assigned a location in the vector space of the 

predictor, which is described by the k-NN method. The proportion of favorable hazards 

among the k-closest values in the teaching set is another way it evaluates future possibility, 

[75]. Figure 10 displays the k-NN algorithm. The following algorithmic stages are used by 

machine learning's most popular classification method, k-NN [75]: 

 Select the “K” values or the number of neighbors that will be used to forecast the 

resulting class. 

 Take the k-number of the data item that is nearest to the new one and is the furthest 

away after measuring the distance between it and the current data points. 

 Calculate the category's statistics after collecting the "K" closest ones. 

 Assign the maximum number of categories per class to the new data point “N”. 

4.6.5 Stochastic Gradient Descent (SGD) 

A relatively efficient approach for fitting symmetric cost functions using linear 

classification and regression analyses is Stochastic Gradient Descent (SGD) [76]. The number 

of hyper-parameters used in this method. SGD [74] is a successful approach for logistic 

regression and linear classifiers that uses both initial work and selective learning. Its key 

benefits is that it is extremely effective and makes it simple to build these algorithms. The 

drawback is that SGD calculations need a variety of hyper-parameters including regularization  
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Figure 11. Stochastic Gradient Descent (SGD) algorithm  

and different cycles. In SGD [77], if there is a huge dataset, then it will just take a random 

sample from that and calculate appropriate weights for them, and then those calculated weights 

are then used for rest of the data as well. It is very helpful to reduce the consumption of machine 

resources, and leads to quick result. Figure 11 shows the explanation of the Stochastic Gradient 

Descent (SGD) algorithm [77]. 

 

4.6.6 Stacking Random Forest, Support Vector Machine, and Logistic Regression (RSL) 

A strategy collectively referred to as an "ensemble approach" [78] combines the best 

elements of various ML techniques into an effective individual model. In general, the model 

performs better than the learners on a personal basis. To create the new model known as 

Ensemble RSL, we employed the stacking ensemble process. As a basic model, the Support 

Vector Machine (SVM) is combined with the Random Forest (RF) and Logistic Regression 

(LR) algorithms to create the ensemble RSL. With the aid of the three algorithms, it increases 

categorization reports' accuracy and precision. 

4.7 Performance measure techniques 

This study used six evaluation methodologies, [79], including accuracy, recall, and 

precision, f-1 Score, Cohen Kappa, and ROC, to evaluate the effectiveness of Machine 

Learning (ML) models. Machine Learning (ML) models use TP, FP, TN, and FN [80] as 

outcome measurement strategies to obtain the correct results. The following diagram [76], 

which is illustrated in figure 12, represents the structure of an array of confusion in which the 

parameters are provided. 
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Figure 12. An array of confusion 

 

The four potential outcomes [80] that are outlined in the following are the basis for all the 

performance measurements that are described: 

True Positive (TP): The quantity of occurrences that were positively identified as having 

chronic kidney disease. 

False Positive (FP): How many cases were misdiagnosed as having chronic kidney disease. 

True Negative (TN): The exact count of cases where chronic kidney disease was diagnosed. 

False Negative (FN): There were just how many cases of chronic kidney disease.  

4.7.1 Accuracy 

Accuracy is defined as the percentage of exactly classified data items compared to the 

average number of data items [81]. Even though accuracy is one of the most widely used 

performance metrics, it occasionally yields inaccurate results, particularly for datasets with 

unbalances. Mathematically, 

Accuracy =  
TP + TN

TP + TN + FP + FN
… … … … … … … … … … … (7) 

4.7.2 Precision 

The number of TP is divided by the total of the TP and FP to determine the level of 

precision [80] for binary categorization. Whether the objective is to reduce FP, precision 

executes accurately on imbalance data. Even if the FP ratio is large, it is still a valuable statistic. 

Mathematically, Precision (P) =  
TP

TP+FP
… … … … … … … … … … . … … … … (8) 

 



 

41 

 

4.7.3 Recall 

Sensitivity or True Positive Rate (TPR) are other terms for recall [81]. It is often 

ascertained by splitting the total amount of TP by the sum of TP and FN. It is also suitable in 

the situation of removing FN from the unbalanced dataset. Mathematically,  

Recall (R) =  
TP

TP + FN
… … … … … … … … … … … … . … … … (9) 

4.7.4 f1-score  

The f1-score is referred to as the harmonic mean of Precision and Recall [82]. Only 

accuracy is insufficient to decide whether the model is appropriate. A logical model will only 

exist when Precision and Recall are high.  For this reason, the performance of two classifiers 

is compared using the f1-score. The more f1-score points there are, the more logical a model 

emerges. Mathematically, 

 f1 − score =  
2PR

P+R
… … … … … … … … … … . . . … . … … … . . (10) 

4.7.5 Cohen Kappa  

A dataset could contain multiple classifications or be out of balance at any given time. 

Metrics like precision, accuracy, or recall are ineffective under these circumstances. An 

excellent metric for handling unbalanced and multi-class situations is Cohen's kappa statistic 

[83]. Mathematically,  

Cohen Kappa =  
Po –  Pe

1 –  Pe
… … … … … … … . … … … … … . (11) 

Where Pe stands for the predicted agreement and Po for an observed agreement. 

4.7.6 Receiver Operating Characteristics (ROC) 

The industry norm for comparing and discussing the correctness of diagnostic 

procedures is now known as ROC curves. Clinical chemists utilize these curves quite frequently 

[84]. The ROC curve is used to visualize, organize, and select the classifiers considering the 

performance. The True Positive Rate (TPR) and False Positive Rate (FPR) are plotted on a 

probability curve at various threshold levels, with the True Positive Rate (TPR) on the Y-axis 

and the False Positive Rate (FPR) on the X-axis. However, using the following formulas [85], 

which are provided below, we may get the True Positive Rate (TPR) and False Positive Rate 

(FPR).       

TPR/Recall/Sensitivity =
TP

TP + FN
… … … … … … … … … … … … … . . (12) 

Specificity =
TN

TN + FP
… … … … … … … … … … … … … … … … … … … . (13) 

FPR = 1 − Specificity =
FP

TN + FP
… … … … … … … … … … … … . … … (14) 
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RESULTS AND DISCUSSION 
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5.1 Introduction  

An important component of this study is the results and discussion chapter which 

focuses on presenting and debating the findings of the experiments conducted for the research. 

This chapter summarizes the outcomes of the suggested materials and methods for predicting 

kidney disease, together with how well they performed in terms of evaluation metrics and 

prediction values. To determine which of the suggested approaches or algorithms works best, 

the findings are evaluated against current best practices. This chapter aids in reaching findings 

and offering suggestions, advancing the study of kidney disease prognosis.  

 

5.2 Result analysis on Baseline Model 

The result includes an investigation of several classification methods of the suggested 

model, which is a chronic kidney disease prediction system. The investigation concentrated on 

how well the model identified kidney illness. Utilizing several classification methods (such as 

SVM, RF, LR, SGD, and k-NN) and efficacy metrics like accuracy, recall, and precision, f1-

score, and Cohen kappa, the models were trained with 400 attributes or data and examined to 

predict chronic kidney disease. Identifying the chronic kidney diseases with high values for 

accuracy, f1-score, precision, recall, Cohen Kappa, sensitivity, and ROC score, then the result 

showed that the suggested model accurately performed. The results of several performance 

evaluation techniques on balanced data are shown in table 6. 

 

Table 6. The performance results of different models using specific datasets.  

Method Accuracy Precision Recall 
f1-

score 

Cohen 

Kappa 

SVM 0.98 0.98 0.98 0.98 0.96 

RF 0.98 0.99 0.98 0.98 0.97 

LR 0.97 0.97 0.97 0.97 0.94 

k-NN 0.98 0.98 0.98 0.98 0.97 

SGD 0.97 0.97 0.97 0.97 0.95 

Proposed 

Ensemble 

RSL 

0.99 0.99 0.99 0.99 0.98 
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Figure 13. Analysis of the CKD prediction results using the SVM model 

 

5.2.1 SVM  

Figure 13 shows the Support Vector Machine (SVM) Classification methods and its 

result in a line plot of prediction value versus performance measurement techniques (PMT), 

including accuracy, precision, recall, f1-score, and Cohen Kappa. The x-axis represents the 

performance measurement techniques (PMT), which help to measure the outcome of the entire 

method. The y-axis represents the prediction accuracy of this model. From the figure, the SVM 

model consists of a plane line and dotted line. With respect to the dotted line the plane line 

represents the values of performance techniques (98% accuracy, 98% precision, 98% recall, 

98% f1-score, and 96% Cohen kappa) that emphasize the SVM model’s performance to predict 

accurately chronic kidney diseases. So, the SVM model correctly predicts the disease of CKD 

by about 98%.  

5.2.2 RF 

In figure 14, the Random Forest (RF) classifier is depicted with a line plot of prediction 

value versus performance measurement techniques (PMT). The x-axis represents the 

performance measurement techniques (PMT), which create a decision for the entire model to 

give the proper outcomes. The y-axis represents the model prediction value. In the figure, the 

RF model consists of a plane line and dotted line. The dotted line is the reference line by 

predicting CKD of this model. The plane line represents the values of performance techniques 

(98% accuracy, 99% precision, 98% recall, 98% f1-score, and 97% Cohen kappa) at a time 

when they increase and decrease. So, the RF model predicts chronic kidney disease about 98% 

accurately, and its highest precision value is 99%.  
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Figure 14. Analysis of the results for the RF model's CKD prediction 

 

Similarly, figures 15, 16, 17, and 18 all illustrate a line plot of prediction value against 

performance measurement techniques (PMTs), including accuracy, precision, recall, fi-score, 

and Cohen Kappa. 

 

5.2.3 LR 

Figure 15 represents the result for accurate CKD prediction using this Logistic 

Regression (LR) model. Showing this figure, we said that the LR model predicted chronic 

kidney disease about 97% accurately, which is represented by a plane line. Also the dotted line 

represent the reference line by predicting CKD in this model. 

 

 

Figure 15. Results analysis for CKD prediction using the LR model.  
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Figure 16. Analysis of the k-NN model's predictions for CKD 

5.2.4 k-NN 

Here, the results are shown in figure 16 for accurate forecasting CKD by using this k-

Nearest Neighbors (K-NN) model. With respect to the dotted line we can see that the k-NN 

prediction model predicted chronic kidney disease 98% correctly, which is shown by a plane 

line. But its Cohen Kappa value is 97%. 

 

5.2.5 SGD 

The Stochastic Gradient Descent (SGD) model, which also plots some prediction values 

from the training attributes and gets a plane line and dotted line is shown in figure 17. The 

dotted line is the reference line for this model. This model correctly identified the disease of 

kidney about 97% of the time, but with a 95% Cohen Kappa score.  

 

Figure 17. Analysis of the results for SGD-based CKD prediction 
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Figure 18. Results analysis for CKD prediction using the Ensemble RSL model. 

 

5.3 Proposed Ensemble RSL 

Figure 18 displays the Ensemble RSL model, whose x-axis represents the performance 

measurement techniques (like accuracy, recall, etc.) and y-axis represents the prediction values 

for properly detecting the CKD. In this figure, the results depict the plane line with respect to 

the dotted line, and it shows a value of 99% with respect to accuracy, precision recall, and f1-

score, but Cohen kappa is about 98%. That’s why the proposed Ensemble RSL is better than 

the other models because its prediction accuracy is high at 99%. We have also told that the 

dotted line represents the reference line for predicting CKD in this model. 

 

5.4 Comparison and Results Analysis among Baseline & Proposed Ensemble RSL models 

Most classification algorithms perform well to classifying the kidney disease by using 

balanced data. Based on several performance evaluation metrics, the results of all the chosen 

methods are depicted in Table 6. 

According to the dataset and figure 19, SVM, k-NN, and RF performed at 98%, but LR 

and SGD at 97%. On the other hand, the proposed ensemble RSL performed at 99% on the 

balanced data. 

In addition to accuracy, our suggested technique outperforms previous benchmark 

algorithms in terms of f1 score, precision, and recall. SVM and k-NN display precision of 98%, 

LR and SGD display precision of 97%, and RF and ensemble RSL display precision of 99%. 
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Figure 19. Accuracy and classification matrices report on different models 

 

In figure 20, the five baseline models and the proposed ensemble RSL model depict the 

plot on the x-axis with Performance Measurement Techniques (PMT) and the y-axis with the 

prediction attributes. Showing this figure, we can understand that the proposed Ensemble RSL 

model is superior to baseline models because its prediction accuracy is better, which is 99%. 

The plane lines in these figures represent the prediction line with accurate results that is used 

to accurately forecast Chronic Kidney Disease (CKD). And all the dotted line represents the 

reference line for predicting CKD among these models. Among these lines, we told that the 

proposed Ensemble line is more powerful to detect kidney disease than baseline models. 

 

 

Figure 20. Comparison on different models with accuracy and classification metrics 
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5.5 ROC Curves among Baseline & Proposed Ensemble RSL models 

In figure 21, the total result is displayed utilizing a ROC curve along with five baseline 

and one ensemble models. Here, the False Positive Rate (FPR) is plotted on the x-axis, and the 

True Positive Rate (TPR) is also plotted on the y-axis. In the respected figure, describe all these 

baseline models, and the proposed ensemble RSL model together, and all are represented by 

the dotted line with various colors. The blue line is the reference and we have plotted difference 

threshold or cutoff values then we get curve of different models like SVM, RF, LR, k-NN, 

SGD and proposed ensemble RSL. The area of the proposed ensemble RSL is greater than the 

area of other baseline models. According to these curves the proposed ensemble RSL model 

performed well with 99% accurately classified CKD. The curve is not shown properly due to 

the crossover of the accuracy. 

 

 

Figure 21. ROC curve of diverse classifiers employing SMOTETomek 
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5.6 Discussion 

All classifiers' parameters are adjusted for the best classification performance, and the 

results from all methods are positive. By analyzing the baseline results, we have seen that the 

performance of SVM, k-NN, and RF is 98%, but that of LR and SGD is 97% respectively. On 

the other hand, RF demonstrated 99% precision, SVM and k-NN demonstrated 98% precision, 

and LR and SGD demonstrated 97% precision. However, we have chosen the best three 

baseline algorithms from the evaluation results, which are RF, SVM, and LR, and combined 

these to create ensemble RSL. Then, the results were compared among the baseline models and 

the proposed ensemble RSL models. The final result demonstrated that our suggested ensemble 

RSL model has a maximum value of 99% for forecasting Chronic Kidney Disease (CKD).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 
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6.1 Introduction 

Conclusion and future work are the two distinct sections of this chapter. The work that 

was performed in this study is summarized in this chapter. The outcome and future direction 

of the work related to our study are also discussed here. 

 

6.2 Conclusion 

The kidney is one of the major organs. Any damage or disease to the kidney can be fatal 

to the human body. Most people are impacted by their irregular lifestyle. Chronic Kidney 

Disease (CKD) damages the internal parts of our body by causing waste blood, and toxic fluids. 

In this study, we provided appropriate methods and findings for this disease's precise and early 

identification to save people from this life-threatening condition. To obtain balanced data from 

imbalanced data, we have also developed a pipeline that includes outlier removal, data 

standardization, and imbalance handling approaches. Support Vector Machine (SVM), 

Random Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (k-NN), and Stochastic 

Gradient Descent (SGD) were also used in this thesis. The classification algorithm known as 

an SVM is capable of classification, regression, and outlier detection. A dataset is increased by 

RF that maintains a variety of decision trees. Multi-class, non-linear, and overfitting issues 

resolve the LR. The k-NN classification method is widely used to classify several applications. 

The reduction coefficient value of a cost function is determined through SGD. The balanced 

data is divided into two subsets (on a ratio of 80:20), which are the training and testing datasets. 

Using the training data, the models are then trained, and the projected values are produced 

using the test data. To obtain expected data, these ML techniques are applied to training and 

testing datasets, and which model correctly predicts kidney disease is also shown. In addition, 

we have analyzed these results by using performance measurement techniques for predicting 

Chronic Kidney Disease (CKD). We therefore evaluated the baseline results and found that the 

performance of SVM, k-NN, and RF was 98%, but 97% for LR and SGD, respectively. On the 

other hand, RF demonstrated 99% precision, SVM and k-NN demonstrated 98% precision, and 

LR and SGD demonstrated 97% precision. All classifiers' variables were improved for the 

greatest classification performance, and the results from all methods are positive. Then we 

considered RF, SVM, and LR but not k-NN because k-NN runs slowly in real time and needs 

to track every training statistic in addition to finding nearby nodes, whereas LR outputs quickly. 

We have also seen that RF, SVM, and LR algorithms give better performance for predicting 

chronic kidney diseases than other baseline algorithms, and that’s why RF, SVM, and LR 

machine learning algorithms are combined in this paper. By evaluating these outcomes, we 
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conclude that the benchmark ML (SVM, RF, LR, k-NN, and SGD) algorithms are less accurate 

than the proposed ensemble RSL model for predicting chronic kidney illness. We achieved the 

highest prediction accuracy of 99% with our chosen model. In terms of f1 score, precision, 

recall, and Cohen Kappa score, we agreed that the suggested RSL was particularly better than 

the competing classifiers. Ultimately, we can state that the medical domain analyzer using our 

proposed ensemble RSL can predict chronic kidney disease more accurately than previous 

approaches. 

 

6.3 Future work 

In the future, we will try to work with more than one dataset and compare the 

performances. A significant use of deep learning techniques is in the field of health care. The 

result might be enhanced using deep learning techniques. To obtain more precise findings, 

dimension reduction and feature selection may be helpful on this subject. We will create our 

own kidney disease dataset in the perspective of Bangladesh and implement the proposed 

methodology and evaluate how well the proposed methodology work. It can also be classified 

as a multi-category problem to assess the severity of the disease. 
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APPENDIX 
Appendix 1 

Implementation code: 

# Importing Library and Load the Data 

import pandas as pd 

import numpy as np 

data = pd.read_csv('kidney_disease.csv') 

data.head (5) 

data['classification'].unique() 

data['classification'].value_counts() 

data.head (5) 

data.columns 

data.tail(5) 

data.describe() 

data.corr() 

import matplotlib.pyplot as plt 

import seaborn as sb 

%matplotlib inline 

 

sb.set(rc = {'figure.figsize':(16,10)}) 

sb.heatmap(data.corr(), annot = True) 

data.dtypes 

cols=data.select_dtypes(include=['object']).columns 

cols 

from sklearn.preprocessing import LabelEncoder 

cols=data.select_dtypes(include=['object']).columns 

# This code will fetch columns whose data type is an object. 

le=LabelEncoder() 

data[cols]=data[cols].apply(le.fit_transform) 

data.head(5) 

data.describe() 

from sklearn.impute import SimpleImputer 

 

imp = SimpleImputer(missing_values = np.NaN, strategy = 'mean') 
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imp.fit(data) 

data = pd.DataFrame(data = imp.transform(data)) 

data.isnull().sum().sort_values(ascending = False).head(13) 

data = data.drop([0], axis = 1) 

data.head (5) 

Q1 = data[1].quantile(0.25) 

Q3 = data[1].quantile(0.75) 

Q1, Q3 

IQR = Q3 - Q1 

lowerlimit = Q1 - 1.5 * IQR 

upperlimit = Q3 + 1.5 * IQR 

data[(data[1] < lowerlimit) | (data[1] > upperlimit)] 

def remove(x): 

if x < lowerlimit: 

x = lowerlimit 

elif x > upperlimit: 

x = upperlimit 

return x 

data[1] = data[1].apply(remove) 

1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18 

data[18] = data[18].apply(remove) 

data[1] = data[1].apply(lambda v: (v - data[1].min()) / (data[1].max() - data[1].min())) 

data[2] = data[2].apply(lambda v: (v - data[2].min()) / (data[2].max() - data[2].min())) 

data[10] = data[10].apply(lambda v: (v - data[10].min()) / (data[10].max() - data[10].min())) 

data[11] = data[11].apply(lambda v: (v - data[11].min()) / (data[11].max() - data[11].min())) 

data[25].unique() 

data[25].replace({2.0:1.0}, inplace=True) 

data[25].unique() 

from sklearn.model_selection import train_test_split 

from numpy import mean 

from numpy import std 

""" 

X = data.drop([7], axis = 1) 

X = data.drop([5], axis = 1) 
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X = data.drop([14], axis = 1) 

X = data.drop([22], axis = 1) 

X = data.drop([8], axis = 1) 

""" 

X = data.drop([25], axis = 1) 

Y = data[25] 

#x_train_smt, x_test_smt, y_train_smt, y_test_smt = train_test_split(X, Y, test_size = 

0.2,random_state = 109) # 80% training and 20% test 

#x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2,random_state = 109) # 

80% training and 20% test 

from collections import Counter 

from imblearn.combine import SMOTETomek 

counter = Counter(Y) 

print('Before', counter) 

smtt = SMOTETomek(random_state = 139) 

X,Y = smtt.fit_resample(X,Y) 

counter = Counter(Y) 

print('After', counter) 

data.head (5) 

x_train_smt, x_test_smt, y_train_smt, y_test_smt = train_test_split(X, Y, test_size = 0.2,rando

m_state = 109) # 80% training and 20% test 

 

#SVC 

from sklearn.svm import SVC 

from sklearn.metrics import accuracy_score 

modelSVC = SVC(probability=True) 

modelSVC.fit(x_train_smt, y_train_smt) 

print(modelSVC.score(x_test_smt, y_test_smt)) 

 

y_pred = modelSVC.predict(x_test_smt) 

ac = accuracy_score(y_test_smt, y_pred) 

print(ac) 

from sklearn.model_selection import cross_val_score 

cv_score_for_SVC = cross_val_score(modelSVC, x_train_smt, y_train_smt, cv = 10) 
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print(cv_score_for_SVC) 

print(mean(cv_score_for_SVC)) 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

y_pred = modelSVC.predict(x_test_smt) 

print(confusion_matrix(y_test_smt, y_pred)) 

print(classification_report(y_test_smt, y_pred)) 

yp=modelSVC.predict(x_test_smt) 

from sklearn.metrics import cohen_kappa_score 

cmSVC = confusion_matrix(y_test_smt, modelSVC.predict(x_test_smt)) 

 

#If we use TP TN FP and FN of below's comment we get a range 

#FP = cmSVC.sum(axis=0) - np.diag(cmSVC) 

#FN = cmSVC.sum(axis=1) - np.diag(cmSVC) 

#TP = np.diag(cmSVC) 

#TN = cmSVC.sum() - (FP + FN + TP) 

 

TP = cmSVC[1,1] 

TN = cmSVC[0,0] 

FP = cmSVC[0,1] 

FN = cmSVC[1,0] 

 

# Sensitivity, hit rate, recall, or true positive rate 

TPR = TP/float(TP+FN) 

# Specificity or true negative rate 

TNR = TN/float(TN+FP) 

# Precision or positive predictive value 

PPV = TP/float(TP+FP) 

# Negative predictive value 

NPV = TN/float(TN+FN) 

# Fall out or false positive rate 

FPR = FP/float(FP+TN) 

# False negative rate 
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FNR = FN/float(TP+FN) 

# False discovery rate 

FDR = FP/float(TP+FP) 

totalSVC=sum(sum(cmSVC)) 

Accuracy = (TN+TP)/totalSVC 

# MCC 

val = (TP * TN) - (FP * FN) 

MCC_SVC = val / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) 

# Cohen Kappa 

Y_pred = modelSVC.predict(x_test_smt) 

cohen_score = cohen_kappa_score(y_test_smt, Y_pred) 

#print("Sensitivity/TPR: " + str(TPR)) 

print("FPR: " + str(FPR)) 

print("Specificity/TNR: " + str(TNR)) 

print("MCC: " + str(MCC_SVC)) 

print("Cohen Kappa: " + str(cohen_score)) 

from sklearn.metrics import roc_auc_score 

# predict probabilities 

pred_prob1 = modelSVC.predict_proba(x_test_smt) 

pred_prob2 = modelSVC.predict_proba(x_test_smt) 

# auc scores 

auc_score1 = roc_auc_score(y_test_smt, pred_prob1[:,1]) 

auc_score2 = roc_auc_score(y_test_smt, pred_prob2[:,1]) 

print(auc_score1, auc_score2) 

 

#RFC 

from sklearn import ensemble 

from sklearn.metrics import accuracy_score 

 

modelRFC = ensemble.RandomForestClassifier(n_estimators = 100) # by default n_estimators 

= 100 

modelRFC.fit(x_train_smt, y_train_smt) 

print(modelRFC.score(x_test_smt, y_test_smt)) 

y_pred = modelRFC.predict(x_test_smt) 
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ac = accuracy_score(y_test_smt, y_pred) 

print(ac) 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

y_pred = modelRFC.predict(x_test_smt) 

print(confusion_matrix(y_test_smt, y_pred)) 

print(classification_report(y_test_smt, y_pred)) 

from sklearn.metrics import cohen_kappa_score 

cmRFC = confusion_matrix(y_test_smt, modelRFC.predict(x_test_smt)) 

 

TP = cmRFC[1,1] 

TN = cmRFC[0,0] 

FP = cmRFC[0,1] 

FN = cmRFC[1,0] 

 

TPR = TP/float(TP+FN) 

TNR = TN/float(TN+FP) 

PPV = TP/float(TP+FP) 

NPV = TN/float(TN+FN) 

FPR = FP/float(FP+TN) 

FNR = FN/float(TP+FN) 

FDR = FP/float(TP+FP) 

totalRFC=sum(sum(cmRFC)) 

Accuracy = (TN+TP)/totalRFC 

val = (TP * TN) - (FP * FN) 

MCC_RFC = val / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) 

Y_pred = modelRFC.predict(x_test_smt) 

cohen_score = cohen_kappa_score(y_test_smt, Y_pred) 

 

print("FPR: " + str(FPR)) 

print("Specificity/TNR: " + str(TNR)) 

print("MCC: " + str(MCC_RFC)) 

print("Cohen Kappa: " + str(cohen_score)) 

from sklearn.metrics import roc_auc_score 
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pred_prob1 = modelRFC.predict_proba(x_test_smt) 

pred_prob2 = modelRFC.predict_proba(x_test_smt) 

 

auc_score1 = roc_auc_score(y_test_smt, pred_prob1[:,1]) 

auc_score2 = roc_auc_score(y_test_smt, pred_prob2[:,1]) 

print(auc_score1, auc_score2) 

#LR 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import accuracy_score 

 

modelLR = LogisticRegression() 

modelLR.fit(x_train_smt, y_train_smt) 

print(modelLR.score(x_test_smt, y_test_smt)) 

 

 

y_pred = modelLR.predict(x_test_smt) 

ac = accuracy_score(y_test_smt, y_pred) 

print(ac) 

from sklearn.model_selection import cross_val_score 

cv_score_for_LR = cross_val_score(modelLR, x_train_smt, y_train_smt, cv = 10) 

print(mean(cv_score_for_LR)) 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

y_pred = modelLR.predict(x_test_smt) 

print(confusion_matrix(y_test_smt, y_pred)) 

print(classification_report(y_test_smt, y_pred)) 

from sklearn.metrics import cohen_kappa_score 

cmLR = confusion_matrix(y_test_smt, modelLR.predict(x_test_smt)) 

 

TP = cmLR[1,1] 

TN = cmLR[0,0] 

FP = cmLR[0,1] 
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FN = cmLR[1,0] 

 

TPR = TP/float(TP+FN) 

TNR = TN/float(TN+FP) 

PPV = TP/float(TP+FP) 

NPV = TN/float(TN+FN) 

FPR = FP/float(FP+TN) 

FNR = FN/float(TP+FN) 

FDR = FP/float(TP+FP) 

totalLR=sum(sum(cmLR)) 

Accuracy = (TN+TP)/totalLR 

val = (TP * TN) - (FP * FN) 

MCC_LR = val / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) 

Y_pred = modelLR.predict(x_test_smt) 

cohen_score = cohen_kappa_score(y_test_smt, Y_pred) 

 

print("FPR: " + str(FPR)) 

print("Specificity/TNR: " + str(TNR)) 

print("MCC: " + str(MCC_LR)) 

print("Cohen Kappa: " + str(cohen_score)) 

from sklearn.metrics import roc_auc_score 

 

pred_prob1 = modelLR.predict_proba(x_test_smt) 

pred_prob2 = modelLR.predict_proba(x_test_smt) 

 

auc_score1 = roc_auc_score(y_test_smt, pred_prob1[:,1]) 

auc_score2 = roc_auc_score(y_test_smt, pred_prob2[:,1]) 

print(auc_score1, auc_score2) 

 

#KNN 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.metrics import accuracy_score 
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modelKNN = KNeighborsClassifier(n_neighbors = 5, algorithm = 'ball_tree', weights = 

'distance', metric = 'minkowski', p = 2) 

modelKNN.fit(x_train_smt, y_train_smt) 

print(modelKNN.score(x_test_smt, y_test_smt)) 

 

y_pred = modelKNN.predict(x_test_smt) 

ac = accuracy_score(y_test_smt, y_pred) 

print(ac) 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

y_pred = modelKNN.predict(x_test_smt) 

print(confusion_matrix(y_test_smt, y_pred)) 

print(classification_report(y_test_smt, y_pred)) 

from sklearn.metrics import cohen_kappa_score 

cmKNN = confusion_matrix(y_test_smt, modelKNN.predict(x_test_smt)) 

 

TP = cmKNN[1,1] 

TN = cmKNN[0,0] 

FP = cmKNN[0,1] 

FN = cmKNN[1,0] 

 

TPR = TP/float(TP+FN) 

TNR = TN/float(TN+FP) 

PPV = TP/float(TP+FP) 

NPV = TN/float(TN+FN) 

FPR = FP/float(FP+TN) 

FNR = FN/float(TP+FN) 

FDR = FP/float(TP+FP) 

totalKNN = sum(sum(cmKNN)) 

Accuracy = (TN+TP)/totalKNN 

val = (TP * TN) - (FP * FN) 

MCC_KNN = val / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) 

Y_pred = modelKNN.predict(x_test_smt) 
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cohen_score = cohen_kappa_score(y_test_smt, Y_pred) 

 

print("Sensitivity/TPR: " + str(TPR)) 

print("FPR: " + str(FPR)) 

print("Specificity/TNR: " + str(TNR)) 

print("MCC: " + str(MCC_KNN)) 

print("Cohen Kappa: " + str(cohen_score)) 

from sklearn.metrics import roc_auc_score 

 

pred_prob1 = modelKNN.predict_proba(x_test_smt) 

pred_prob2 = modelKNN.predict_proba(x_test_smt) 

 

auc_score1 = roc_auc_score(y_test_smt, pred_prob1[:,1]) 

auc_score2 = roc_auc_score(y_test_smt, pred_prob2[:,1]) 

print(auc_score1, auc_score2) 

 

#SGD 

from sklearn.linear_model import SGDClassifier 

from sklearn.metrics import accuracy_score 

modelSGDC = SGDClassifier(loss = 'log', penalty = "l1", max_iter = 10) 

modelSGDC.fit(x_train_smt, y_train_smt) 

print(modelSGDC.score(x_test_smt, y_test_smt)) 

 

y_pred = modelSGDC.predict(x_test_smt) 

ac = accuracy_score(y_test_smt, y_pred) 

print(ac) 

 

from sklearn.model_selection import cross_val_score 

cv_score_for_SGDC = cross_val_score(modelSGDC, x_train_smt, y_train_smt, cv = 10) 

print(mean(cv_score_for_SGDC)) 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

y_pred = modelSGDC.predict(x_test_smt) 
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print(confusion_matrix(y_test_smt, y_pred)) 

print(classification_report(y_test_smt, y_pred)) 

from sklearn.metrics import cohen_kappa_score 

cmSGDC = confusion_matrix(y_test_smt, modelSGDC.predict(x_test_smt)) 

 

TP = cmSGDC[1,1] 

TN = cmSGDC[0,0] 

FP = cmSGDC[0,1] 

FN = cmSGDC[1,0] 

 

TPR = TP/float(TP+FN) 

TNR = TN/float(TN+FP) 

PPV = TP/float(TP+FP) 

NPV = TN/float(TN+FN) 

FPR = FP/float(FP+TN) 

FNR = FN/float(TP+FN) 

FDR = FP/float(TP+FP) 

totalSGDC=sum(sum(cmSGDC)) 

Accuracy = (TN+TP)/totalSGDC 

val = (TP * TN) - (FP * FN) 

MCC_SGDC = val / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) 

Y_pred = modelSGDC.predict(x_test_smt) 

cohen_score = cohen_kappa_score(y_test_smt, Y_pred) 

 

print("FPR: " + str(FPR)) 

print("Specificity/TNR: " + str(TNR)) 

print("MCC: " + str(MCC_SGDC)) 

print("Cohen Kappa: " + str(cohen_score)) 

from sklearn.metrics import roc_auc_score 

 

pred_prob1 = modelSGDC.predict_proba(x_test_smt) 

pred_prob2 = modelSGDC.predict_proba(x_test_smt) 

 

auc_score1 = roc_auc_score(y_test_smt, pred_prob1[:,1]) 
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auc_score2 = roc_auc_score(y_test_smt, pred_prob2[:,1]) 

print(auc_score1, auc_score2) 

 

#Ensemble RSL 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.ensemble import StackingClassifier 

 

estimators = [ 

('rf', RandomForestClassifier(n_estimators=10, random_state=42)), 

('svc',SVC(random_state = 42)), 

('lr', LogisticRegression(solver='liblinear')) 

] 

clf = StackingClassifier( 

estimators=estimators, final_estimator = LogisticRegression(solver='liblinear') 

) 

 

clf.fit(x_train_smt, y_train_smt).score(x_test_smt, y_test_smt) 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

y_pred = clf.predict(x_test_smt) 

print(confusion_matrix(y_test_smt, y_pred)) 

print(classification_report(y_test_smt, y_pred)) 

from sklearn.metrics import cohen_kappa_score 

cmABCH = confusion_matrix(y_test_smt, clf.predict(x_test_smt)) 

 

TP = cmABCH[1,1] 

TN = cmABCH[0,0] 

FP = cmABCH[0,1] 

FN = cmABCH[1,0] 

 

TPR = TP/float(TP+FN) 

TNR = TN/float(TN+FP) 
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PPV = TP/float(TP+FP) 

NPV = TN/float(TN+FN) 

FPR = FP/float(FP+TN) 

FNR = FN/float(TP+FN) 

FDR = FP/float(TP+FP) 

totalABCH = sum(sum(cmABCH)) 

Accuracy = (TN+TP)/totalABCH 

 

val = (TP * TN) - (FP * FN) 

MCC_ABCH = val / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) 

 

Y_pred = clf.predict(x_test_smt) 

cohen_score = cohen_kappa_score(y_test_smt, Y_pred) 

 

print("Sensitivity/TPR: " + str(TPR)) 

print("FPR: " + str(FPR)) 

print("Specificity/TNR: " + str(TNR)) 

print("MCC: " + str(MCC_ABCH)) 

print("Cohen Kappa: " + str(cohen_score)) 

from sklearn.metrics import roc_auc_score 

 

pred_prob1 = clf.predict_proba(x_test_smt) 

pred_prob2 = clf.predict_proba(x_test_smt) 

 

auc_score1 = roc_auc_score(y_test_smt, pred_prob1[:,1]) 

auc_score2 = roc_auc_score(y_test_smt, pred_prob2[:,1]) 

 

print(auc_score1, auc_score2) 

from sklearn.metrics import roc_curve 

 

pred_prob1 = modelSVC.predict_proba(x_test_smt) 

pred_prob3 = modelRFC.predict_proba(x_test_smt) 

pred_prob5 = modelLR.predict_proba(x_test_smt) 

pred_prob7 = modelKNN.predict_proba(x_test_smt) 
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pred_prob8 = modelSGDC.predict_proba(x_test_smt) 

pred_prob10 = clf.predict_proba(x_test_smt) 

 

fpr1, tpr1, thresh1 = roc_curve(y_test_smt, pred_prob1[:,1], pos_label = 1) 

fpr3, tpr3, thresh3 = roc_curve(y_test_smt, pred_prob3[:,1], pos_label = 1) 

fpr5, tpr5, thresh5 = roc_curve(y_test_smt, pred_prob5[:,1], pos_label = 1) 

fpr7, tpr7, thresh7 = roc_curve(y_test_smt, pred_prob7[:,1], pos_label = 1) 

fpr8, tpr8, thresh8 = roc_curve(y_test_smt, pred_prob8[:,1], pos_label = 1) 

fpr10, tpr10, thresh10 = roc_curve(y_test_smt, pred_prob10[:,1], pos_label = 1) 

 

random_probs = [0 for i in range(len(y_test_smt))] 

p_fpr, p_tpr, _ = roc_curve(y_test_smt, random_probs, pos_label=1) 

import matplotlib.pyplot as plt 

plt.style.use('seaborn') 

 

# plot roc curves 

plt.plot(fpr1, tpr1, linestyle = '--', color = 'orange', label = 'SVC') 

plt.plot(fpr3, tpr3, linestyle = '--', color = 'red', label = 'RFC') 

plt.plot(fpr5, tpr5, linestyle = '--', color = 'yellow', label = 'LR') 

plt.plot(fpr7, tpr7, linestyle = '--', color = 'magenta', label = 'KNN') 

plt.plot(fpr8, tpr8, linestyle = '--', color = 'cyan', label = 'SGDC') 

plt.plot(fpr10, tpr10, linestyle = '--', color = 'teal', label = 'Enemble') 

plt.plot(p_fpr, p_tpr, linestyle = '--', color = 'blue') 

plt.title('ROC curve') 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive rate') 

plt.legend(loc='best') 

#plt.savefig('ROC',dpi=300) 

plt.show() 
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