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Abstract 

Underwater environments pose a distinct set of challenges in comparison to terrestrial 

environments, demanding advanced solutions for data acquisition and control systems. The 

significance of accurate data readings cannot be overstated, as they directly influence the 

performance of controllers and augmented systems operating within these environments. 

To address this, the concept of active noise control (ANC) has emerged, focusing on the 

effective and adaptive management of both low- and high-frequency noise. This study 

focuses on creating a strong system to reduce noise and handle disruptions in underwater 

places using the proposed modified FxLMS algorithm to deal with the specific problems 

caused by noise, disturbances, and unpredictable changes in sensor readings underwater. 

The paper will comprehensively explore the formulation of the modified FxLMS algorithm, 

emphasising its parameters and underlying equations along with some concurrent adaptive 

algorithms. A thorough analysis and concise discussion of these equations will shed light 

on their role in achieving noise reduction and data refinement objectives. By leveraging the 

insights gained from the simulation results, the paper will demonstrate the effectiveness of 

the proposed model in noise reduction and data enhancement within underwater 

environments. The ability to achieve these objectives, particularly in the presence of 

unpredictable variations and noise, underscores the robustness and adaptability of the 

developed system. 
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Chapter 1 

INTRODUCTION 

 

1.1 Underwater Environment 

 Underwater noise refers to the complex array of sounds present in aquatic 

environments, primarily caused by natural and anthropogenic sources. These sources 

include marine life, geological activities, shipping vessels, industrial operations, and even 

human recreational activities. The study of underwater noise is crucial as it has significant 

implications for marine ecosystems, communication among marine species, and the 

accurate collection of scientific data. 

Recovering noise-free signals underwater is considerably more challenging compared to 

terrestrial environments due to several key factors: 

1. Propagation of Sound: Sound travels differently in water than in air. Water is 

denser and more efficient at conducting sound, allowing it to travel longer distances 

and carry more energy. This means that noise generated from distant sources can 

easily propagate over vast areas, making it difficult to isolate specific signals from 

the background noise. 

2. Signal Attenuation and Scattering: As sound travels through water, it experiences 

attenuation (reduction in intensity) and scattering (directional changes) due to the 

interaction with particles and molecules in the water column. This phenomenon 

leads to the distortion of signals, making it challenging to recover the original noise-

free signals accurately. 

3. Multiple Noise Sources: Underwater environments host a multitude of noise 

sources, both natural and anthropogenic, operating simultaneously. Biological 

activities such as marine animal vocalisations, geological processes like underwater 

earthquakes, and human activities like shipping, drilling, and sonar operations all 

contribute to the acoustic landscape. Separating and filtering out specific signals 

amidst this cacophony of noise is a daunting task. 

4. Lack of Acoustic Barriers: Unlike terrestrial environments where physical barriers 

like walls can help block or isolate noise sources, water lacks such barriers. Sound 
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waves can travel freely and spread in all directions, further complicating efforts to 

recover noise-free signals. 

5. Limited Sensor Performance: Underwater sensors face challenges due to the 

harsh and corrosive nature of aquatic environments. Pressure, temperature, and 

fouling (the buildup of marine organisms or debris on sensor surfaces) can still 

impair the performance of underwater microphones (hydrophones) and other 

acoustic sensors despite advances in their development. 

6. Complex Data Processing: The vast amount of collected acoustic data underwater 

requires sophisticated data processing techniques. Analysing and filtering this data 

to distinguish desired signals from the surrounding noise demands advanced 

algorithms and significant computational power. 

7. Environmental Variability: Underwater environments are highly dynamic, with 

conditions changing rapidly due to factors such as currents, tides, and weather. 

These variations can introduce additional noise and complicate the task of 

recovering noise-free signals. 

 Efforts to recover noise-free signals underwater involve a combination of advanced 

signal processing techniques, acoustic modelling, and the deployment of specialised sensor 

arrays. Researchers are continually working to develop innovative solutions to mitigate the 

challenges posed by underwater noise, including real-time noise cancellation algorithms. 

1.2 Active Noise Control (ANC) 

 Active Noise Control (ANC) is a sophisticated technology that holds significant 

promise for mitigating the challenges of recovering noise-free signals in underwater 

environments. Unlike passive noise reduction methods that rely on physical barriers or 

materials to attenuate noise, ANC operates in real-time to actively counteract noise by 

generating anti-noise signals. In underwater environments, where a complex mixture of 

natural and anthropogenic noise sources can overlap and interfere with desired signals, 

ANC's adaptability becomes a crucial advantage.  

 ANC systems typically consist of hydrophones that capture incoming noise and 

feed it to a control unit. This unit then processes the noise signals, generating anti-noise 

signals that are precisely tailored to the incoming noise's characteristics. When these anti-

noise signals combine with the original noise, they effectively cancel each other out, 
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resulting in a noise-free acoustic environment. The basic concept was first introduced by 

Bernard widrow et al [1]. 

 The ability of ANC to dynamically adjust its anti-noise signals based on real-time 

noise conditions is particularly well-suited for the underwater environment. The technology 

can adapt to changes in noise sources, intensity, and spatial distribution, providing a 

continuous and effective noise reduction solution. This adaptability is especially important 

in scenarios such as marine animal communication research, underwater surveillance, and 

the monitoring of underwater infrastructure. While challenges like sensor deployment, 

power supply, and algorithm complexity need to be addressed, ongoing advancements in 

ANC technology hold great promise for enhancing the recovery of noise-free signals in 

underwater environments. By actively countering the unique challenges posed by 

underwater noise, ANC contributes to improved data accuracy, communication reliability 

among marine species, and the overall understanding of aquatic ecosystems. 

1.3 Background 

 Active Noise Control (ANC) uses feedforward to make a sound-cancelling pressure 

wave with the secondary/control speaker based on a reference signal measurement from 

the primary/disturbance speaker/source to lower the sound pressure at the error microphone 

(Fig. 1.1) 

 

Figure 1: Diagram of a duct with a dusturbance speaker, a reference microphone, a noise 

cancellation actuator and an error microphone in which P denotes the primary and G the 

secondary path. 

 The iadaptive ifilter is an iessential ipart iof iANC isince iit iprovides inoise ireduction 

iwithout iprior iknowledge iof ithe inoise ior isignal. iTraditional ifilters iwould icause idistortion iin 

ithe idesired isignal ioutput. iAs ia iresult, iadaptive ifilters iare iappropriate iin icircumstances 

iwhere icommunication iand inoise isignals iare irandom in character [2].  
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To increase the performance of ANC, various adaptive algorithms have been proposed. 

Among them, RLS (recursive least squares) and LMS (least mean squares)-based 

algorithms are popular due to their fewer complications [3]. Adaptive filtering involves 

adjusting the parameters of a filter in real-time to achieve a desired output based on input 

data. Both RLS and LMS algorithms are widely used for this purpose due to their distinct 

characteristics and advantages. 

RLS is known for its optimal parameter estimation capabilities. It takes into account 

the entire history of input data, making it particularly effective in situations where the data 

is correlated or stationary [2]. This makes RLS well-suited for applications requiring 

accurate and precise parameter estimation, such as adaptive beamforming in 

communication systems, channel equalisation, and system identification. However, RLS 

has higher computational complexity compared to LMS, which can be a limitation in 

resource-constrained environments [4]. 

Reducing the computational burden associated with matrix inversion in RLS, YT 

Zhang proposed Fast RLS (FRLS) [5] that utilizes efficient matrix factorization techniques. 

This makes it more suitable for real-time implementations and resource-constrained 

environments. FRLS is particularly advantageous for applications that require quick and 

efficient adaptation, making it ideal for scenarios with rapidly changing input conditions. 

FRLS achieves computational efficiency through approximations, which can introduce 

errors and impact estimation accuracy to some extent compared to the standard RLS 

algorithm. But implementing FRLS with proper matrix factorization techniques requires 

careful consideration and may involve more complex design compared to the standard RLS. 

Paulo Sergio Ramirez proposed a Lattice-Based Recursive Least Squares (RLS) 

Algorithm that utilizes lattice structures for efficient computation [6]. In this method, the 

input data is processed through a series of lattice stages, with each stage representing a 

different tapped delay line. The algorithm updates coefficients at each stage while 

minimizing the estimation error. The lattice structure reduces computational requirements 

compared to conventional RLS, making it suitable for real-time and resource-constrained 

applications. Lattice-based RLS handles high-dimensional data effectively, which is crucial 

in modern signal processing applications. However, while it reduces complexity compared 

to traditional RLS, the lattice-based approach might still be more complex than simpler 

adaptive filtering methods like the Least Mean Squares (LMS) algorithm. Implementing 
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and understanding the lattice-based approach might require a steeper learning curve 

compared to more straightforward algorithms. 

The QR decomposition-based Recursive Least Squares (RLS) Algorithm uses QR 

decomposition to simplify RLS update computation [7]. The iinput idata imatrix iis 

idecomposed iinto ian iorthogonal imatrix i(Q) iand ian iupper itriangular matrix (R) using this 

procedure. The QR decomposition-based approach reduces computational complexity, 

especially in high-dimensional scenarios, and offers improved numerical stability 

compared to standard RLS algorithms. Although this approach can mitigate the sensitivity 

of RLS to data perturbations, leading to improved robustness, but may require additional 

memory to store the decomposition matrices, potentially affecting its applicability in 

memory-constrained environments. The initial decomposition step adds some 

computational overhead, which might impact the algorithm's performance during the initial 

phase. 

Regularized RLS (RRLS) prevents overfitting and helps maintain stable filter 

adaptation. But the introduction of regularization might trade off some convergence speed 

compared to the standard RLS. Block RLS processes data in blocks rather than individual 

samples, reducing the overall computational load and memory requirements compared to 

traditional RLS when dealing with large datasets. But processing data in blocks introduces 

a delay in the adaptation process compared to standard RLS, which can impact the 

algorithm's ability to track rapidly changing system dynamics.  

1.4 LMS based algorithms vs. RLS based algorithms 

The iconvergence irate iof iLMS-based ialgorithms iis isignificantly islower ithan ithat iof 

ithe iRLS ialgorithm. iAlthough ithe iRLS ialgorithm ihas ian iexceptional iconvergence irate, iit 

icannot itrack ithe iestimation ibecause iit iis idependent ion iits imodel, iinput idata, iand, ias ithe 

icomputation iadvances, ithe correlation matrix [8]. 

Whether ithe ileast imean isquares i(LMS)-based ialgorithm iis ibetter ithan ithe irecursive 

ileast isquares i(RLS)-based ialgorithm idepends ion ithe ispecific icontext iand irequirements iof 

ithe iapplication. iBoth ialgorithms are widely used in adaptive filtering and have their own 

advantages and disadvantages. 

1.4.1 Advantages of LMS over RLS: 

1. Simplicity and Lower Complexity: LMS is generally simpler to implement and 

has lower computational complexity compared to RLS. It updates the filter 
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coefficients incrementally for each new data point, making it more suitable for real-

time processing and applications with limited computational resources. 

2. Adaptation Speed: LMS updates its coefficients with every new data point, which 

can lead to faster adaptation to changes in the data. This is particularly useful when 

the system dynamics are changing rapidly. 

3. Robustness to Outliers: LMS tends to be less sensitive than RLS. It can handle 

situations where the data might contain occasional large errors without significantly 

affecting the parameter estimation. 

1.4.2 Advantages of RLS over LMS: 

1. Optimal Parameter Estimation: RLS provides optimal parameter estimation. It 

takes into account the entire history of data, leading to potentially more accurate 

estimates, especially when dealing with stationary or correlated data. 

2. Fewer Tunable Parameters: RLS typically has fewer tuning parameters to set 

compared to LMS, which may simplify the algorithm setup and reduce the need for 

manual parameter tuning. 

In summary, the choice between LMS and RLS depends on factors such as the 

desired level of accuracy, computational resources, speed of adaptation, noise 

characteristics, and the specific characteristics of the application.  

LMS-based algorithms are often used in underwater environments because they can 

handle the unique challenges of underwater acoustic communication in a flexible and stable 

way. The underwater medium introduces severe signal propagation issues such as multipath 

reflections, signal attenuation, and high noise levels. LMS algorithms excel in these 

conditions as they update filter coefficients incrementally based on the most recent data 

points, enabling real-time adaptation to changing channel conditions. Their ability to track 

rapid variations in the channel, such as those caused by moving underwater vehicles or 

changing water conditions, makes them well-suited for dynamic underwater environments. 

The simplicity of LMS implementations aligns with the constraints often faced in 

underwater systems, where computational resources and power may be limited. Overall, 

LMS-based algorithms offer a practical and effective approach to mitigating the unique 

challenges of underwater communication, making them a popular choice in underwater 

acoustic signal processing and communication systems. 
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One key problem with LMS is its sensitivity to the scale of the input data, which 

can lead to slow convergence or even divergence if the step size is not appropriately 

adjusted. NLMS overcomes this problem by normalizing the step size based on the power 

of the input signal, resulting in a more consistent and stable convergence rate across a wide 

range of input magnitudes. NLMS tackles this problem by emphasizing larger updates for 

smaller error contributions, effectively reducing the impact of noise on the adaptation 

process. However, NLMS can be sensitive to noise and may require careful tuning of its 

parameters to achieve optimal performance. Using iPast iWeight iVectors iand iRegularization 

iparameters, iManish iD. iSawale iand iRam iN. iYadav iproposed a new NLMS algorithm [9] 

that offers certain advantages but also presents notable drawbacks. On the positive side, 

leveraging past weight vectors can enhance convergence and tracking performance by 

incorporating historical information. However, this approach comes with several 

limitations. The utilization of past weight vectors and a regularization parameter can lead 

to increased computational complexity, which might hinder real-time processing in 

resource-constrained applications. Moreover, the integration of these additional 

components may introduce additional hyperparameters that need to be optimized, adding 

complexity to the algorithm's implementation and tuning process. 

Normalized Least Mean Square (NLMS) algorithm based on the Kalman Filter 

framework provides certain advantages [10]. One notable benefit is the potential for 

improved tracking and adaptation in dynamic environments, as the Kalman Filter 

inherently accounts for time-varying characteristics. However, the combined algorithm's 

performance is heavily dependent on the accurate estimation of initial states and 

parameters, which can be challenging in practical scenarios. 

In FXLMS (Filtered-x LMS), these issues are mitigated through the introduction of 

a secondary adaptive filter, often referred to as the "secondary path model" [11]. This model 

figures out the system's unwanted dynamics, like echoes or reverberations, and subtracts 

them from the primary output. This way, disturbances like these have less of an effect on 

the adaptation process. FXLMS also has a fractional delay component that helps fix phase 

mismatches between the primary and secondary paths. This makes the algorithm work 

better in situations where phase alignment is very important. By using these new ideas, 

FXLMS improves convergence speed, stability, and overall performance. This makes it a 

good improvement over NLMS in situations where system dynamics are complicated and 

phase differences are common. 
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However, the complete mathematical analysis of the FxLMS algorithm and the 

exact rules for the step size adjustment are not known at this time, likely due to its highly 

nonlinear properties [3]. FxLMS iinherited ithe istep isize, iwhich iis ithe imost iinherent 

icharacteristic iof ithe iLeast iMean iSquares i(LMS) ialgorithm, iand iit irequires icareful 

iadjustment. iConvergence iis idifficult idue ito ithe ismall istep isize irequired ifor ia ismall iexcess 

imean isquare ierror. iLarge istep isizes, iwhich iare inecessary ifor irapid iadaptation, imay icause ia 

iloss iof istability. iConsequently, imodifications ito ithis ialgorithm iare irequired, iin iwhich ithe 

istep isize ivaries iduring ithe iadaptation iprocess ibased ion specific characteristics. 

1.5 Motivation 

The dynamic nature of underwater noise, influenced by factors like changing 

currents, varying noise source locations, and unpredictable marine activity, demands a 

solution that can respond in real-time to these fluctuations. In the literature, FxLMS is 

identified as a comparatively suitable method for noise cancellation of continuing noise, 

but it has limitations that must be addressed. 

1.6 Objective 

By addressing following objectives, the thesis aims to contribute to the field of noise 

cancellation and enhance our understanding of LMS-based algorithms' effectiveness in 

real-world applications. 

 To simulate and compare the performance of various LMS-based methods, including: 

Least Mean Square (LMS), Normalized Least Mean Square (NLMS) algorithm, 

Filtered-x NLMS (FxNLMS) algorithm, Filtered-X LMS (FxLMS) algorithm. 

 To investigate the rate of convergence for each of the mentioned algorithms and 

evaluate the signal-to-noise ratio (SNR) for the different LMS-based algorithms. 

 To develop a modified Filtered-x LMS (FxLMS) algorithm for noise cancellation. 

 To analyze and compare the performance of the modified FxLMS algorithm against the 

existing LMS-based methods in terms of both convergence rate and SNR. 

1.7 Structure 

The purpose of this study is to implement several adaptive filtering techniques for 

noise cancellation. The thesis comprises both a theoretical and a practical section to help 

the reader understand the proposed solution. In the theoretical part of the thesis, adaptive 

filtering theories and the proposed algorithm are explained. In the practical part, LMS, 
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NLMS, FxNLMS, and FxLMS, as well as the proposed FxLMS algorithm, are used in real-

world situations.  

Chapter 2, "Physics of Sound," introduces the foundational concepts of sound 

waves, pressure, and their behavior. It covers the basics of acoustics, including the 

propagation of sound waves in various dimensions, the superposition principle, and the 

relationship between frequency, phase, and noise cancellation performance in Active Noise 

Cancellation (ANC) systems. 

In Chapter 3, ian iintroduction ito iadaptive ifilters iis iprovided, ias iwell ias ia idescription 

iof ithe idistinctions ibetween ithe ivarious iadaptive ifiltering imethods. iThe iadaptive ifiltering 

itheory idescribed iby iMonson iH. iHayes iin ithe ibook i“Statistical iDigital iSignal iProcessing 

and Modelling” [12] is used as the key reference. 

Chapter 4 "Methods and Materials" introduces the Kalman Filter, a state estimation 

algorithm used for navigation and noise reduction, explaining its components. Proposed 

adjustments for noise reduction are discussed, including the use of Kalman gain instead of 

a fixed step size for FxLMS for effective signal denoising. 

Chapter 5 "Results and Discussion" presents ithe ioutcomes iof ithe iproposed 

imethodology ifor inoise icancellation iin iterms iof ivarious iadaptive ifiltering ialgorithms 

simulated in Matlab and the performance results, emphasizing comparison criteria such as 

convergence rate and signal-to-noise ratio (SNR) before and after filtering, showcasing the 

advantages of the Modified Filtered-x Least Mean Squares (FxLMS) algorithm in terms of 

faster convergence and efficient noise reduction. 

Chapter 6, The last chapter summarizes the current work and performance findings. 

  



 

10 
 

Chapter 2 

THEORETICAL VIEW OF ACTIVE NOISE CONTROL 

 

2.1 Introduction 

 Active noise control (ANC) is the technique of cancelling sound waves with a com-

pensation source. In the ideal case, the compensation signal would be of the same 

magnitude as the noise, but 180° different in phase, through out an entire sound field to be 

silenced. This chapter will cover the techniques used to achieve noise cancellation with real 

systems. 

2.2 ANC structures 

 In this chapter, basic single channel ANC structures are introduced. These are the 

feedforward and feedback ANC structures. Then, adaptive filters are discussed, including 

why and how they are used in different ANC systems. Finally, the most common algorithms 

used to implement adaptive filters are covered. 

2.2.1 Feedforward method 

 In the feedforward method a reference sensor is picking up a reference signal x(n), 

which is correlated with the unwanted noise d(n) [13]. This reference signal is used to 

produce a compensation signal played by a compensation source. The process is monitored 

with an error sensor, which can adaptively control processes used to create the 

compensation signal [13] [14]. This adaptation is commonly done with an adaptive filter, 

noted as W(z). 

 The acoustic domain path from the reference sensor to the error sensor is known as 

the primary path P(z). Most acoustic domain signal modifications are linear such as, 

temporal delay, magnitude alteration and phase modifications [13] [14]. Thus, the effects 

of the primary path can be represented with a linear filter. 

 The acoustic domain compensation signal produced by the ANC algorithm and the 

compensation source is noted as y(n) [13]. Signals d(n) and y(n) behave linearly in the 

acoustic domain and their residual is picked up by an error sensor. This residual error 

transferred to the electrical domain is noted as e(n) [14]. 
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 The path from the adaptive filter's output, back to the adaptation process as the error 

signal is known as the secondary path S(z). This path includes effects from digital analog 

converter, compensation source response, acoustic propagation path to error sensor, error 

sensor response, anti-aliasing filter and finally analog digital converter [13]. Figure 2 shows 

the complete feedforward ANC structure. 

 The sensors used for reference and error measurements are commonly 

microphones, but nonacoustic meters such as tachometers and optical sensors can be used 

as well [13]. However, broadband ANC is more commonly implemented with 

microphones, while other sensors are used in narrowband applications like engine noise or 

active vibration control [13]. The issues with microphones is that, they may suffer from 

acoustic feedback caused by compensation source signal leaking to reference microphone, 

whereas nonacoustic meters are less prone to feedback. Acoustic feedback can be combated 

by mechanical construction or by filtering out the compensation signal from the error 

microphone [13]. 

 

Figure 2: Feedforward ANC diagram. Figure adopted from [13] 

2.2.2 Analog feedback method 

 In feedback ANC structure there is an error sensor, compensation source and a 

compensation signal processing block. Since no reference sensor is used, acoustic feedback 

issues caused by compensation signal leaking in to reference sensor are avoided. The lack 

of a reference sensor accentuates the effects of processing loop delay. In feedback ANC, 

compensation signal can be produced with analog circuits and adaptive processes [13]. 
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Adaptive methods will be introduced in Chapter 3, while an example of the analog feedback 

system is introduced here. 

 Figure i13 ishows ithe inovel istructure iof ia ifeedback iANC. iThe isymbols iused ifor inoise 

isignal id(n), icompensation isignal iy(n), isecondary ipath iS(z) and ierror isignal ie(n) iare ithe 

isame ias iin ithe ifeedforward istructure. 

 

Figure 3: Feedback ANC diagram. Figure adopted from [13]. 

 Analog feedback control systems have been developed, by including a phase 

inverting amplifier of —A in the feedback loop, where A is the factor of amplification 

applied in the feedback loop. Performance of such structure is dependent on effects 

included in the secondary path, such as processing loop delay, overall phase response and 

acoustic domain propagation time from compensation source to error sensor. When 

frequencies get higher, smaller temporal errors cause larger shifts in phase. Since secondary 

path can never be flat in real applications, there is always a limit on how high frequencies 

can be attenuated with an analog feedback ANC system [13]. 

 In practice, as frequencies get higher the 180° phase starts gradually turning in to 

positive feedback, resulting in an unstable system. An intuitive solution to this problem 

would be to limit the system to only allow stable frequencies. However, filters with sharp 

cutoff frequencies can have phase responses, which can make even low frequencies 

unstable. Sharper cutoffs also introduce more delay to the signal, further diminishing the 

performance of feedback ANC. For these reasons, moderate filter rolloffs are preferred and 

consequently the cutoff has to be set to a lower frequency, limiting usable band of a 

feedback system [13]. 

 As mentioned, delay in the feedback loop has to be minimized. One way to limit 

the loop delay is to physically move the error sensor closer to the compensation source, 

effectively reducing the delay caused by secondary path's acoustic propagation time. 
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However, there is a limit on how close the error microphone can be to the compensation 

source. The radiation patter of a loudspeaker may not be as uniform and well behaved in 

the near field as in the far field [13]. 

2.2.3 Adaptive feedback method 

 Another way of producing compensation signal in feedback ANC is to use a linear 

predictor. Linear predictors work by calculating the next sample based on previous 

samples. Because there is no upstream of samples available in the feedback method, linear 

predictors are only capable of attenuating the periodic components in noise [11]. 

2.3 Adaptive filters 

 Adaptive filters change their coefficients according to their input, thus they are 

considered nonlinear [15]. However, at any given time instance the adaptation can be halted 

and those filter coefficients can be viewed as a linear filter. Some have used nonlinear filters 

for ANC but, acoustic domain processes are approximated linear in this thesis. Thus, the 

filters covered in this thesis are linear as well. 

 In the feedforward ANC method adaptive filters are used for unknown system 

modeling and in the feedback method for predicting future samples. Since the processes to 

be modeled are unknown, the adaptation has to be done iteratively [15]. Speed of the 

adaptation is related to the step size, commonly noted as . This section will focus more on 

why and how adaptive filters are used in ANC. Different algorithms used for adaptation 

are introduced in the following sections. 

2.3.1 General block diagram of the adaptive filters:  

 In iFigure i4, iw irepresents ithe icoefficients iof ithe iFIR ifilter itap iweight ivector, ix(n) iis 

ithe iinput ivector isample, iis ia idelay iof ione isample, iy(n) iis ithe iadaptive ifilter ioutput, id(n) iis 

ithe idesired iechoed isignal iand ie(n) iis ithe iestimation iof ithe ierror isignal iat itime in. iThe iaim iof 

ian iadaptive ifilter iis ito icalculate ithe idifference ibetween ithe idesired isignal iand ithe iadaptive 

ifilter ioutput, ie(n).The ierror isignal iis ifed iback iinto ithe iadaptive ifilter iand iits icoefficients iare 

ichanged ialgorithmically iin iorder ito iminimize ia ifunction iof this difference, which is known 

as the cost function [16].  



 

14 
 

 

Figure 4: Block diagram of adaptive filter. 

 In ithe icase iof iacoustic iecho icancellation, ithe ioptimal ioutput iof ithe iadaptive ifilter iis 

iequal iin ivalue ito ithe iunwanted iechoed isignal. iWhen ithe iadaptive ifilter ioutput iis iequal ito 

idesired isignal ithe ierror isignal igoes ito izero. In iithe iisituation iithe iiechoed iisignal iiwould ibe 

icompletely icancelled iand ithe ifar iuser iwould inot ihear iany iof itheir ioriginal ispeech returned 

to them. 

2.3.2 Applications of adaptive filters 

a) System identification 

 System iidentification ideals iwith ithe icapability iof ian iadaptive isystem ito ifind iFIR 

ifilter ithat ibest ireproduces iof ianother isystem, iwhose ifrequency iresponse iis iunknown. iThe 

idiagrammatical iset iup iis ishown iin Figure 5.  

 When ithe iadaptive isystem ireaches iits ioptimum ivalue iand ithe ioutput iis iclose ito izero 

ian iFIR ifilter iis iobtained iwhose iweights iare ithe iresult iof ithe iadaptation iprocess ithat iis igiving 

ithe isame ioutput ias ithat iof ithe i'unknown isystem' ifor ithe isame iinput. iIn iother iwords, ithe iFIR 

ifilter ireproduces ithe ibehavior iof ithe i'unknown isystem' [17]. This idesign iis isaid ito ibe 

iefficiently iworking iwhen ithe ifrequency iresponse iof ithe isystem ito ibe iidentified imatches 

iwith ithat iof ia icertain iFIR ifilter. iIn icase iof iunknown isystem ihaving ian iall-pole ifilter, ithen 

ithe iFIR ifilter iwill iapproach ifor ithe ibest iresult. iThe isystem ioutput iwill inever ibe izero ibut iit 

imay icompromise ireducing iit iby iconverging ito ian ioptimum iweight vector. The frequency 

response of the FIR filter will try to get the best approximate out of it but not exactly equal 

to that of the 'unknown system. 
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Figure 5: System identification via adaptive filter. 

b) Noise cancellation in speech signals 

 Adaptive ifiltering ican ibe iextremely iuseful iin icases iwhere ia ispeech isignal iis 

isubmerged iin ia ivery inoisy ienvironment iwith imany iperiodic icomponents ilying iin ithe isame 

ibandwidth ias ithat of speech [17]. The idesign iof iadaptive inoise icanceller ifor ispeech isignals 

iconsists iof itwo iinputs. iThe idesired iinput iconsists iof ivoice ithat iis icorrupted iby inoise i(speech 

isignal) iand iother ireference iinput ithat icontains inoise iwhich iis irelated iin isome iway ito ithe 

idesired iinput inoise. iThe inoise ireference iinput iis imade ias isimilar ias ithat iof ithe idesired iinput 

inoise iby ipassing iit ito ithe isystem ifilter iand ithat ifiltered iversion iis isubtracted ifrom ithe 

idesired iinput. iTherefore, iby iremoving ithe inoise ifrom ithe idesired iinput isignal ithe inoise ifree 

isignal iis iobtained. iThe isetup iis ishown iin iFigure i6. iFrom ipractical isystem inoise iis inot 

icompletely iremoved ibut iits level is reduced considerably. 

 

Figure 6: Noise cancellation via adaptive filter. 

c) Signal prediction 

 Predicting isignals imay iseem ito ibe ian iimpossible itask, iwithout isome ilimiting 

iassumptions. iAssume ithat ithe isignal iis ieither isteady ior islowly ivarying iover itime, iand 
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iperiodic iover itime ias iwell. iHere ithe ifunction iof ithe iadaptive ifilter iis ito iprovide ibest 

iprediction i(in isome isense) iof ithe ipresent ivalue iof ia irandom isignal. iAccepting ithese 

iassumptions, ithe iadaptive ifilter imust ipredict ithe ifuture ivalues iof ithe idesired isignal ibased ion 

ipast ivalues. iWhen is(k) iis iperiodic isignal iand ithe ifilter iis ilong ienough ito iremember iprevious 

ivalues, ithis istructure iwith ithe idelay iin ithe iinput isignal, ican iperform ithe iprediction. iThis 

istructure ican ialso ibe iused ito iremove ia iperiodic isignal ifrom istochastic inoise isignals. iThe 

ipresent ivalue iof ithe isignal iserves ithe ipurpose iof ia idelayed iresponse ifor ithe iadaptive ifilter. 

iPast ivalues iof ithe isignal isupply ithe iinput iapplied ito ithe iadaptive ifilter. iDepending iupon ithe 

iapplication iof iinterest, ithe iadaptive ifilter ioutput ior ithe iestimation i(prediction) ierror imay 

iserve ias ithe isystem ioutput. iIn ithe ifirst icase, isystem ioperates ias ia ipredictor, iin ithe latter case; 

it operates as a prediction error filter. The setup is shown in Figure 7. 

 

Figure 7: Predicting future values of a periodic signal. 

d) Interference cancellation 

 In ithis iapplication, iadaptive ifilter iis iused ito icancel iunknown iinterference icontained 

ialongside ian iinformation isignal icomponent iin ia iprimary isignal, iwith ithe icancellation ibeing 

ioptimized iin isome isense iin iFigure i8. iThe iprimary isignal iserves ias ithe idesired iresponse ifor 

ithe iadaptive ifilter. iA ireference i(auxiliary) isignal iis iemployed ias ithe iinput ito ithe iadaptive 

ifilter. iThe ireference isignal iis iderived ifrom ithe isensor ior iset iof isensors ilocated iin irelation ito 

ithe isensors isupplying ithe iprimary isignal iin isuch ia iway ithat the information signal 

component is weak or essentially undetectable [17]. 

 

Figure 8: Interference cancellation model via adaptive filter. 
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e) Channel equalization 

 In icommunication ichannels isuch ias iwireless, itelephone iand ioptical ichannels iare 

iaffected iby iinter-symbol iinterference i(ISI). iThe ichannel ibandwidth ibecomes iinefficient, 

iwithout ithe iutilization iof ichannel iequalization. iChannel iequalization iis ia iprocess iof 

icompensating ifor ithe ieffects icaused iby ia iband-limited ichannel, ihence ienabling ihigher idata 

irates [18]. These effects are due to the out-of-boundary transmission medium and the 

multipath effects in the radio channel. A typical communication system is depicted in 

Figure 9. 

 

Figure 9: A baseband communication system. 

 In the receiver the equalizer is incorporated by introducing inter-symbol 

interference to the channel. The equalizer output transfer function is directly inverse to the 

channel transfer function estimate. 

 

Figure 10: Adaptive equalizer. 

 The equalizer is designed to be adaptive to the channel variation in the transmission 

of high speed data over a band limited channel. The equalizer is recursively updated by an 
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adaptive algorithm based on the observed channel output for reconstructing the output 

signal. The configuration of an adaptive equalizer is depicted in Figure 14. 

2.3.3 Filter types 

 Adaptive filters are implemented with digital filters [13]. Digital filters are either 

finite impulse response (FIR) filters, meaning the output of the filter is produced from a 

weighted sum of the previous input samples or infinite impulse response (IIR) filters, where 

the output is a weighted sum of previous input and output samples [15]. 

Adaptation algorithms have been developed for both FIR and IIR filters.  

2.3.3.1 FIR Adaptive filters  

 Finite iImpulse iResponse iFIR ifilters ias ithe iname isuggests, ihave ian iimpulse iresponse 

iwith ifinite ilength. iA inon-recursive ifilter ihas ino ifeedback iand iits iinput-output irelation iis 

igiven iin i(2.3.1) iby ithe ilinear iconstant icoefficient idifference iequation. 

 𝑦(𝑛) = ∑ 𝑏𝑛(𝑘)𝑥(𝑛 − 𝑘)

𝑞

𝑘=0

 
2.3.1 

 The ioutput iy(n) iof ia inon-recursive ifilter iis iindependent iof ithe ipast ioutput ivalues, iit 

iis ia ifunction ionly iof ithe iinput isignal ix(n) iand ithe ifilter icoefficient ib(k), iwhere ik=0,1,…,q. 

iThe iresponse iof isuch ia ifilter ito ian iimpulse iconsists iof ia ifinite isequence iof iq+1 isamples, 

iwhere iq iis ithe ifilter iorder. iA idirect-form iFIR iadaptive ifilter ifor iestimating ia idesired isignal 

id(n) ifrom ithe irelated iinput isignal ix(n) is illustrated in the next figure. 

 Finding ithe icoefficient ivector i𝑤𝑛  iat isample in ithat iproduces ithe ileast iamount iof 

imean-square ierror iis ithe iobjective iof ithe iprocess iof icreating ithe iFIR iadaptive ifilter. iIn 

iequation i(2.3.2), ithe ifilter ioutput iy(n) iof ia iFIR iadaptive ifilter iis icalculated iin iorder to 

estimate a desired signal d(n) based on a related signal x(n). This estimation is performed 

in order to find the distance between the two signals [12]. 
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Figure 11: Block diagram of a direct-form FIR adaptive filter (Source: modified from 

[12]) 

 𝑦(𝑛) = ∑ 𝑤𝑛(𝑘)𝑥(𝑛 − 𝑘) =

𝑞

𝑘=0

 𝑤𝑛
𝑇𝑥(𝑥) 

2.3.2 

 It iis iassumed ithat iboth isignals ix(n) iand id(n) iare inon-stationary isignals iand the goal 

is ito ifind ithe icoefficient ivector iat itime in ithat iminimizes ithe mean-square error. 

 𝜉(𝑛) = 𝐸{|𝑒(𝑛)|2} 2.3.3 

 The ierror isignal iin i(2.3.4) iis icalculated ifrom ithe idifference ibetween ithe ifilter output 

signal iy(n) iand ithe idesired isignal d(n). 

 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) = 𝑑(𝑛) − 𝑤𝑛
𝑇𝑥(𝑛) 2.3.4 

 To ifind ithe ifilter icoefficients ithat iminimize ithe imean-square ierror iit iis inecessary ito 

iset ithe iderivative i𝜉(𝑛) iequal ito izero iwith irespect ito i𝑤𝑛∗(k) ifor ik i= i0,1…, iq iand i∗ irepresents 

ithe icomplex iconjugate, iwhich ileads ito ithe result. 

 𝐸{𝑒(𝑛)𝑥∗(𝑛 − 𝑘)} = 0 2.3.5 

Substituting equation (2.3.4) in equation (2.3.5), it becomes (2.3.6) [12] 
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 𝐸 {[𝑑(𝑛) − ∑  

𝑞

𝑘=0

𝑤𝑛(𝑘)𝑥(𝑛 − 𝑘)] 𝑥∗(𝑛 − 𝑘)} = 0 
2.3.6 

 FIR ifilters iare icommonly iused ifor inoise icancellation iapplications. iThe iFIR ifilter iin 

iits inon-recursive iform iis ialways istable. iFIR ifilters ican ihave ia ilinear iphase iresponse iand 

ithey ican ibe iset iup iin iorder iintroduce ino iphase idistortion ito ithe isignal. iThe iFIR ifilter ican 

ihave iany istructure, ilike idirect iform, icascade iform ior ilattice iform, ibut ithe imost icommon 

iform iis ithe direct form, also known as transversal structure. 

2.3.3.2 IIR Adaptive filters  

 An iIIR ifilter ican ihave ian iinfinite inumber iof icoefficients iin iits iimpulse iresponse. iIIR 

ifilters ifeature ifeedback ithat igoes ifrom ithe ioutput ito ithe iinput, iand ithe ioutput iis ia ifunction iof 

iboth ithe imost irecent iinput isamples iand ithose ithat icame ibefore ithem [19]. The linear 

constant coefficient difference equation of the IIR filter is (2.3.7). 

 𝑦(𝑛) = ∑  

𝑝

𝑘=1

𝑎𝑛(𝑘)𝑦(𝑛 − 𝑘) + ∑  

𝑞

𝑘=0

𝑏𝑛(𝑘)𝑥(𝑛 − 𝑘) 
2.3.7 

 where i𝑎𝑛  i(k) iand i𝑏𝑛  i(k) iare ithe icoefficients iof ithe iadaptive ifilter iat isample in. iThe 

ioutput isample iy(n) idepends ion ipast ioutput isamples iy(n-k), ias iwell ias irecent iand ipast iinput 

samples x(n-k), that is known as the IIR filter’s feedback. Shown in the following figure is 

the block diagram of an IIR adaptive filter. 

 

Figure 12: Block diagram of an IIR adaptive Filter. 
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 In iorder ito iminimize ithe imean-square ierror i𝜉(𝑛) i= i𝐸{|𝑒(𝑛)|2}, iwhere ie(n) iis ithe 

idifference ibetween ithe idesired iprocess id(n) iand ithe ioutput iof ithe iadaptive ifilter iy(n), it is 

necessary to define some vectors [12]. The filter coefficient vector Θ is represented as 

 Θ = [
𝑎
𝑏

] = [
𝑎(1), 𝑎(2), … , 𝑎(𝑝)
𝑏(0), 𝑏(1), … , 𝑏(𝑞)

]
𝑇

 
2.3.8 

 The idata ivector iz(n) iin i(2.3.9) idenotes ithe iaggregate idata ivector iand icontains ithe 

ipast ioutput isamples ias iwell ias irecent iand past input samples. 

 𝑧(𝑛) = [
𝑦(𝑛 − 1)

𝑥(𝑛)
] = [

𝑦(𝑛 − 1, ), 𝑦(𝑛 − 2, ), … , 𝑦(𝑛 − 𝑝)
𝑥(𝑛 − 𝑝), 𝑥(𝑛), … , 𝑥(𝑛 − 𝑞)

]
𝑇

 
2.3.9 

 The ioutput iof ithe ifilter iin i(2.3.10) ican ibe iexpressed iin iterms iof ithe ifilter icoefficients 

Θ and the data vector z(n) 

 
 

2.3.10 

 With ithe ifeedback icoefficients ian(k) ithe imean-square ierror iis ino ilonger iquadratic, 

i𝜉(𝑛) imay ihave imultiple ilocal iminima iand maxima [12] [20]. The gradient vector must be 

set to zero 

 𝐸{𝑒(𝑛)∇𝑒∗(𝑛)} = 0 2.3.11 

Since e(n) = d(n) – y(n) then 

 𝐸{𝑒(𝑛)∇𝑦∗(𝑛)} = 0 2.3.12 

Differentiating ∇𝑦∗(𝑛) with respect to 𝑎∗(𝑘) and 𝑏∗(𝑘) results in 

 

𝛿𝑦∗(𝑛)

𝛿𝑎∗(𝑘)
= 𝑦∗(𝑛 − 𝑘) + ∑  

𝑝

𝑘=1

 𝑎∗(𝑘) ∗
∂𝑦∗(𝑛 − 𝑘)

∂𝑎∗(𝑘)
 ; 𝑘 = 1,2, … , 𝑝

𝛿𝑦∗(𝑛)

𝛿𝑏∗(𝑘)
= 𝑦∗(𝑛 − 𝑘) + ∑  

𝑞

𝑘=0

 𝑏∗(𝑘) ∗
∂𝑦∗(𝑛 − 𝑘)

∂𝑏∗(𝑘)
 ; 𝑘 = 0,1, … , 𝑞

 2.3.13 

Finally, combining the equations leads to 
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             𝐸 {𝑒(𝑛) [𝑦(𝑛 − 𝑘) + ∑𝑘=1
𝑝

 𝑎(𝑘) ∗
∂𝑦(𝑛 − 𝑘)

∂𝑎(𝑘)
]

∗

} = 0 ; 𝑘 = 1,2, … , 𝑝 

𝐸 {𝑒(𝑛) [𝑥(𝑛 − 𝑘) + ∑𝑘=0
𝑞

 𝑏(𝑘) ∗
∂𝑦(𝑛 − 𝑘)

∂𝑏(𝑘)
]

∗

} = 0 ; 𝑘 = 0,1, … , 𝑞 

2.3.14 

 Since ithe iequations iare inonlinear, ithey iare idifficult ito isolve ifor ithe ioptimum ifilter 

icoefficients. iDue ito ithe inonlinearity, ithe isolution imay inot ibe iunique, itherefore ithe isolution 

iwill irather icorrespond ito ia ilocal irather ithan ia iglobal iminimum. i 

 The istrength iof ithe iIIR ifilters icomes ifrom ithe ifeedback iprocedure, ibut ithe 

idisadvantage iof iit iis ithat ithe iIIR ifilter ibecomes iunstable ior ipoor iin iperformance iif iit iis inot 

iwell idesigned. iA icommon iform iof ithe irecursive iIIR ifilter iis ithe lattice structure. 

 IIR filters construct their output from past input and output samples and require less 

coefficients. This comes at the cost of not being able to have linear phase response and 

having to check the stability of the filter. If the output samples being fed back to the filter 

are amplified by their coefficients, the filter's output can grow exponentially and the filter 

can become unstable. IIR filters have been used in adaptive filters, but as the filter 

coefficients adapt, the IIR structure stability has to be constantly monitored. In practice, 

this reduces the size of the step size used and thus the convergence is slower [13]. 

 FIR filters require more coefficients compared to IIR filters, but they are always 

stable. All linear behavior in phase and magnitude can be modeled with FIR filters. Even 

the response of an IIR filter can be reproduced with a FIR filter, by taking sufficient amount 

of coefficients from the impulse response of a given IIR filter. In this thesis only adaptive 

FIR filters were investigated. 
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Chapter 3 

ADAPTIVE FILTERING ALGORITHMS 

 

3.1 Adaptive filtering algorithms 

Adaptive ialgorithms iare iused ito imodify ithe icoefficients iof ithe idigital ifilter iin isuch ia iway 

ithat ithe ierror isignal iis iminimized iin iaccordance iwith isome icriterion. iThere iare iseveral 

ivariants iof iadaptive ifiltering ialgorithm ito ichoose ifrom. iMost iof ithem ican ibe icategorized ias 

ileast imean isquare i(LMS) iand irecursive ileast isquare i(RLS) based. An overview of the 

different types can be seen in Figure 13. 

 

Figure 13: Types of Adaptive Filtering Algorithms. 

LMS algorithms, are like smart tools that adjust certain settings in a digital filter to 

make sure the difference between what we want and what we actually get becomes as small 

as possible [21]. There are different types of these LMS variants, such as NLMS, TVLMS, 

and VSSLMS. These algorithms use certain methods to make these adjustments, kind of 

like following a path that guides them based on the current mistake. 

Recursive adaptive filtering algorithms like RLS and FTRLS find coefficients that 

minimize a weighted linear least squares cost function for input signals. This differs from 

least mean-squares LMS, which reduces mean-square error. [22].  
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LMS-based algorithms are popular since they can adapt and withstand underwater 

acoustic communication challenges. Details are discussed in chapter 1. The underwater 

medium introduces severe signal propagation issues such as multipath reflections, signal 

attenuation, and high noise levels. LMS algorithms excel in these conditions as they update 

filter coefficients incrementally based on the most recent data points, enabling real-time 

adaptation to changing channel conditions, and also makes them well-suited for dynamic 

underwater environments. 

We will look into different LMS based methods, like the Least Mean Square(LMS) 

itself, Normalized Least Mean Square(NLMS) algorithm, Filtered-X NLMS (FxNLMS) 

algorithm and Filtered-X LMS (FxLMS) algorithm, and compared how well they work. 

3.2 LMS algorithm 

Least mean square (LMS) is an algorithm used to calculate adaptive filter 

coefficients. It can be used to model unknown systems, such as the primary path of a 

feedforward ANC system. The LMS algorithm uses gradient descent, a technique where it 

takes steps in the direction opposite to the gradient, helping it locate a nearby lowest point 

[15]. Due to it being light to calculate and simple to implement, the LMS algorithm has 

established itself as the standard algorithm used in adaptive filter applications. 

The LMS algorithm works by approximating the true gradient with the mean of 

squared error. The resulting equation for adapting filter coefficients for the next iteration 

can be represented as 

 𝑤(𝑘 + 1) = 𝑤(𝑘) + 2 𝑒𝑥(𝑘) 3.2.1 

where 𝑤(𝑘 + 1) is a vector containing the updated filter coefficients, w(k) is a 

vector containing the current adaptive filter coefficients,  the factor of step size taken in 

the direction of the gradient, 𝑒 the instantaneous error which remains constant for all filter 

coefficients throughout the iterations and 𝑥(𝑘) is a buffer containing the most recent 

reference signal samples [15]. 

Figure 14 shows the LMS algorithm implemented with a FIR filter, in a block 

diagram form. The most resent reference signal sample 𝑥(𝑘) is fed to the algorithm and all 

previous samples of 𝑥 are passed along the chain of unit delays z-1. The result of the 

adaptive FIR filter's output, denoted as y(k), is determined by multiplying each sample of 

the filter, represented as 𝑥(𝑘 − 𝑛), with its corresponding weight, 𝑤𝑛(𝑘), and then adding 
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them together [15]. Mathematically this can be written as 𝑦(𝑘) = ∑ 𝑤𝑛𝑥(𝑘 − 𝑛)𝑁
𝑛=0  or just 

𝑤𝑇𝑥. 

The error sample e(k) is calculated by summing y(k) and noise sample d(k), which 

is then multiplied by 2 for the adaptation process. Finally, all coefficients are moved in 

the direction of negative gradient 2𝑒𝑥(𝑘) as shown in equation 6. [15] 

Step size  determines adaption speed. Small  take longer to obtain ideal filter 

coefficients but are more stable. 

 

Figure 14: Block diagram of the LMS algorithm implementation with a FIR filter. 

Diagram adapted from [15]. 
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3.2.1 Implementation of the LMS algorithm: 

 The following equation illustrates LMS components. 

 The output signal y(n) is computed by a standard FIR filter: 

 𝑦(𝑛) =  ∑ 𝑤𝑖(𝑛) ∗ 𝑥(𝑛 − 𝑖)

𝑀−1

𝑖=0

 
3.2.2 

 The error signal equals the difference between the reference signal 𝒅(𝒏) and filter 

output: 

 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) 3.2.3 

 After each iteration on which the sample of the error signal is computed, the filter 

coefficients w(n) are updated for n=0,1,2… 

 𝑤(𝑛 + 1) = 𝑤(𝑛) +  𝑒(𝑛) 𝑥 ∗ (𝑛) 3.2.4 

The step size  influences how quickly the coefficients come together. The resulting 

output signal, y(n), and the error signal, e(n), are expressed using equations (3.2.2) and 

(3.2.3) respectively. 

3.2.2 Advantages and disadvantages of LMS algorithm 

 The LMS algorithm has a straightforward implementation and requires minimal 

computational resources. 

 The LMS algorithm has overall better convergence, meaning it can converge to the 

optimal solution under certain conditions. 

 While the LMS algorithm generally converges quickly, it can exhibit slow convergence 

in certain scenarios. This can occur when dealing with highly correlated input signals 

or when the step size parameter is not appropriately selected. 

 If the initial values of LMS filter are far from the optimal solution, it may take longer 

to converge or even converge to a suboptimal solution. 

3.2.3 Computational complexity of LMS algorithm 

 In each iteration of the LMS algorithm, the total number of multiplications is 2M, 

where M is the number of filter taps. 
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3.3 NLMS algorithm 

The iLMS iis ibased ion isteepest idescent ialgorithm. iLMS ialgorithm iis iused iwidely ifor 

idifferent iapplications isuch ias ichannel iequalization iand iecho icancellation. iThis ialgorithm iis 

iused idue ito iits icomputational isimplicity.  

One of the main drawbacks of the LMS algorithm is that it uses the same step size 

every time it makes changes. This can be tricky when the input signal keeps changing. To 

solve this, we can change the step size as needed using time varying approach. The NLMS 

method is like a smarter version of LMS. It figures out a different step size for each change 

it makes. This step size depends on how much energy the input signal has. So, when the 

input signal is stronger, NLMS takes smaller steps, and when it's weaker, it takes bigger 

steps. This helps NLMS work better with changing signals. 

In the NLMS algorithm, step size towards the gradient is normalized with the sum 

of all reference signal samples squared, which can be represented as, 

𝜇 =
𝜇

𝛼 + 𝑥𝑇𝑥
 

where 𝛼 is a small value, used to prevent division with zero in the case of all zero 

buffer of x. Since NLMS scales the steps size to match the magnitude of reference signal, 

it only affects the filter coefficient adaptation. 

In real applications size of the reference cannot be controlled, NLMS algorithm 

has to be used. If NLMS is not used while the reference signal levels change, it has the 

same effect as changing the LMS algorithm's step size [13]. This means, low reference 

signal levels will adapt slower and high levels faster or even turn the system unstable. 

3.3.1 Implementation of the NLMS algorithm 

 The output of the received signal is calculated as 

 𝑦(𝑛) =  ∑ 𝑤(𝑛)𝑥(𝑛 − 𝑖)

𝑁−1

𝑖=0

=  𝑤𝑇(𝑛)𝑥(𝑛) 
3.3.1 

 An error signal is the difference between the reference signal and the filter output 

 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) 3.3.2 
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 The step size is calculated as 

𝜇(𝑛) =
1

𝑥𝑇(𝑛)𝑥(𝑛)
 

 The filter tap weights are updated for the next iteration 

 𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇(𝑛)𝑒(𝑛)𝑥(𝑛) 3.3.3 

3.3.2 Advantages and Disadvantages of NLMS algorithm 

 NLMS ialgorithm ihaving ilow icomputational icomplexity, iwith good convergence 

speed. 

 It ihas iminimum isteady istate error. 

 Sensitivity to rapid changes in the input signal, leading to potential instability. 

 Difficulty in handling correlated input signals, affecting adaptation performance. 

 The step size selection process can be challenging and critical for optimal 

performance. 

3.3.3 Computational Complexity of NLMS algorithm 

 Computational Complexity of NLMS is 3N+1, which is N times as much 

multiplying as LMS, where N is the length of the coefficient vector. 

3.4 FxNLMS algorithm 

The FxNLMS (Filtered-x Normalized Least Mean Squares) algorithm is an 

adaptive filtering algorithm that combines the benefits of the NLMS algorithm with an 

additional filtering step to enhance its performance in various scenarios. 

In ithe iFxNLMS ialgorithm, ithe iinput isignal iis ifiltered iby ian FIR filter to create a 

filtered ireference isignal. iThis ifiltered ireference isignal iis ithen iused ito iadaptively iadjust ithe 

ifilter icoefficients based ion ithe ierror ibetween ithe idesired isignal iand ithe ifilter ioutput. iThe 

ikey iidea ibehind iFxNLMS iis ithat iby iusing ithe ifiltered ireference isignal, ithe ialgorithm ican 

ieffectively iadapt ito ichanges iin ithe iinput isignal iand iimprove iits iability ito itrack idynamic 

variations. 

The iFxNLMS iupdate iequation iinvolves ithe iadjustment iof ithe ifilter icoefficients iin 

iproportion ito ithe ierror isignal iand ithe ifiltered ireference isignal. iImportantly, ithe istep isize 

iparameter iis inormalized iby ithe ienergy iof ithe ifiltered ireference isignal ito iensure istable iand 
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icontrolled iadaptation. iAdditionally, ia small positive constant is introduced to prevent 

division by zero. 

3.4.1 Implementation of the FxNLMS algorithm 

The FxNLMS algorithm equations are as follows: 

 Filtering the Reference Signal: FxNLMS introduces a reference signal u(n) 

which is filtered through an FIR filter F to create a filtered reference signal uf (n): 

𝑢𝑓(𝑛) = 𝐹 ⋅ 𝑢(𝑛) 

where F is the FIR filter coefficients and u(n) is the original reference signal. 

 Error Calculation: The ierror isignal ie(n) iis ithe idifference between the desired 

signal id(n) iand ithe ioutput y(n): 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) 

 Update Coefficients: The coefficients w(n) of the adaptive filter are updated 

using the FxNLMS update equation: 

 𝑤(𝑛 + 1) = 𝑤(𝑛) +
𝜇

𝜖 + 𝑢𝑓
𝑇(𝑛)𝑢𝑓(𝑛)

⋅ 𝑒(𝑛)𝑢𝑓(𝑛) 3.4.1 

Where, 

 w(n) is the coefficient vector at time n. 

 𝑢𝑓 is the filtered reference signal. 

 e(n) is the error signal. 

 mu is the step size parameter. 

 epsilon is a positive constant. 

 This algorithm adaptively adjusts the filter coefficients based on the error between 

the desired signal and the filter output. The filtering of the reference signal u(n) with the 

FIR filter F provides improved tracking and convergence behavior compared to the basic 

NLMS algorithm. 

3.4.2 Advantages and disadvantages of FxNLMS algorithm 

 FxNLMS's filtered reference signal accelerates convergence and improves tracking 

in changing environments. 
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 The algorithm's filtering step enhances noise suppression and improves signal-to-

noise performance. 

 The filtered reference signal requires additional memory storage. 

 May not be as effective in handling highly nonlinear systems or signals. 

3.4.3 Computational complexity of FxNLMS algorithm 

 The filtering operation and coefficient update are performed for each of the N 

iterations, resulting in a computational complexity of O(LN). Compared to the basic NLMS 

algorithm, the FIR filtering step adds some overhead, but the benefits of improved 

convergence and noise robustness may justify the increased complexity. 

3.5 FxLMS algorithm 

The optimal solution for adaptive filter is W(z) = P(z)/S(Z). Since S(z) is constantly 

part of the ANC system it would be more efficient if W(z) would not have to adapt to 

reversing relatively constant effects of S(z) [13].  

An intuitive solution to this would be to create an inverse filter for S(z)0. However, 

in all real application S(z) produces latency, from steps such as acoustic flight time between 

compensation source and error sensor. Thus, in order to create an inverse filter for S(z), the 

inverse filter would be required to reverse latency, i.e. predict future samples. This is not 

possible to be implemented unless, W(z) has modeled some latency, which can compensate 

for the needed prediction. 

Effects of 1/S(z) can be removed from W(z), by placing an estimate of secondary 

path Ŝ(z), prior to the LMS algorithm [23]. Since Ŝ(z) is placed in front of x(n) the algorithm 

is called filtered x LMS (FxLMS). Ŝ(z), can be modeled offline, prior to starting the system. 

It has been shown that offline model of S(z) does not have to be perfect. In testing, the 

FxLMS algorithm was able to converge even with 90° phase error. Figure 15 shows a block 

diagram of a feedforward FxLMS system. 
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Figure 15: Block diagram of a FxLMS feedforward ANC system. Diagram adapted from 

[13]. 

If the secondary path of a feedback system can be modeled, a reference signal 

correlated with d(n) can be synthesized. The synthesized reference can then be used to 

simulate a feedforward type structure. In a feedback ANC system, only e(n) and y(n) are 

known. Since, d(n) = e(n) + s(n) * y(n), a reference signal x(n) can be created as 

x(n)=𝑑̂(𝑛)= e(n) + 𝑠̂(n) * y(n), where 𝑑̂(𝑛) is an approximation of the noise signal and 

𝑠̂(n) the modeled secondary path. This system can function as a feedforward system, 

however since the reference is synthesized and not measured, there is no advantage of a 

physical look-ahead from having a microphone further away from the silenced zone. Figure 

13 shows a block diagram of the introduced feedback FxLMS system. 

Why Ŝ(z) is added to the adaptation algorithm can be understood as the following. 

Since W(z) and S(z) are both linear, the order in which signals are processed through them 

does not make a difference. If S(z) was before W(z) in 8 block diagram, it could be easier 

to see that, if effects of S(z) were also applied to the adaptation algorithm, it would be 

effectively the same as applying S(z) to both paths. Because S(z) cannot be removed from 

the system, adding Ŝ(z) prior to the adaptation algorithm includes the same filtering effects 

to both paths. Once W has converged the W(z)S(z) = P(z) or W(z)S(z) = —P(z), depending 

on whether or not a separate inverter was used. 
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Figure 16: Block diagram of an offline calculation setup for estimating system's 

secondary path. Diagram adapted from [13]. 

One method for realizing the offline estimation is to internally create a broadband 

signal, such as white noise, to be used as a reference signal. The broadband signal can be 

passed to the adaptive filter and the compensation source. Once the adaptation has 

converged, the adaptive filter has created an estimate of S(z). Since only a compensation 

source and error sensor are used, this method can be realized for both, feedforward and 

feedback systems. Figure 16 shows the described algorithm, with secondary path effects 

shown in the upper dotted line rectangle. 

 FxLMS extends the LMS method by adding a secondary path model. This extra 

model helps create an adaptive filter to eliminate unwanted noise or interference. It works 

by using a reference signal that matches the noise, which goes through the adaptive filter 

to create a guess of the noise. This estimated noise is then subtracted from the main input 

signal to get the signal we want. FxLMS is really good at getting rid of noise and is often 

used for active noise control. 
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3.5.1 Advantages and disadvantages of FxLMS algorithm 

 Effective in reducing the impact of a known reference noise signal on the adaptive 

filter output. 

 Can adjust the filter coefficients to be balanced to track changes in the reference 

noise signal. 

 Performance heavily relies on the accuracy of the reference noise signal estimation. 

 Limited effectiveness when dealing with non-stationary or time-varying noise 

signals. 

3.5.2 Computational complexity of the FFxLMSSalgorithm 

 The computational complexity of the FxLMS algorithm is similar to that of the LMS 

algorithm, with additional computations for the reference signal filtering. The complexity 

per iteration can be expressed as O(M + N), where M is the number of filter taps and N is 

the length of the reference signal. 

3.6 Comparing Adaptive Filtering Algorithms: 

 In the realm of adaptive filtering algorithms, various methods have been developed 

to efficiently adapt to changing environments and process data in real-time applications. 

This table summarize comprehensive comparison of four widely used adaptive filtering 

techniques that already discussed above: Least Mean Squares (LMS), Recursive Least 

Squares (RLS), Normalized Least Mean Squares (NLMS), Filtered-x Normalized Least 

Mean Squares (FxLMS) and Filtered-x Least Mean Squares (FxLMS). Each algorithm has 

its unique strengths and limitations, making it crucial for engineers and researchers to 

understand their characteristics thoroughly. 

The comparison on Table 1 focuses on key criteria to evaluate the algorithms' 

performance, encompassing Computational Complexity, Convergence Rate, Signal-to-

Noise Ratio (SNR) handling capabilities, Cost considerations, overall Effectiveness in 

various applications, and Limitations that may affect their practical utility. 
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Table 1: Summary of different Adaptive Filtering Algorithms. 

 

A
lg

o
ri

th
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s 

 

LMS 

(Least Mean 

Squares): 

NLMS 

(Normalized 

Least Mean 

Squares) 

FxNLMS 

(Filtered-x 

Normalized 

Least Mean 

Squares) 

FxLMS 

(Filtered-x 

Least Mean 

Squares) 
Parameter 

Computational 

Complexity 
Low Low 

Low to 

Moderate 
Moderate 

Convergence 

Rate 

Slower 

compared to 

RLS and Affine 

projection 

Slower 

compared to 

LMS 

Similar to 

LMS 
Moderate 

SNR 
Moderate 

performance 

Moderate 

performance 

Good 

performance 

when used for 

active noise 

control 

Good 

performance 

Cost Low Low Moderate Moderate 

Effectiveness 

Simple and 

widely used, 

suitable for basic 

adaptive filtering 

tasks 

Improved 

stability and 

robustness 

compared to 

LMS 

Effective in 

active noise 

control 

applications, 

cancels noise 

or interference 

Fast 

convergence, 

suitable for 

sparse and 

time-varying 

environments 

Limitation 

Slower 

convergence 

compared to 

other algorithms, 

may struggle 

with highly 

dynamic 

environments 

Slightly 

slower 

convergence 

than LMS, 

may not be as 

effective in 

highly 

dynamic 

environments 

 

Limited to 

active noise 

control 

applications, 

may not be as 

versatile as 

other 

algorithms for 

general 

adaptive 

filtering tasks 

May not be as 

effective in 

handling 

highly 

nonlinear 

systems or 

signals. 

 

ANC aims to reduce unwanted noise by generating an anti-noise signal that cancels 

out the incoming noise, leading to a quieter and more pleasant environment. Though 

FxLMS may not be as versatile as other algorithms for general adaptive filtering tasks but 
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excels in this domain due to its adaptability and real-time response capabilities. It 

efficiently tracks changes in noise characteristics by adaptively updating its filter 

coefficients, enabling precise estimation of the anti-noise signal required for effective noise 

cancellation. 

One of FxLMS's key strengths lies in its ability to accurately model the secondary 

path between the noise source and the error microphone. By employing a filtered reference 

signal that accounts for the secondary path's transfer function, FxLMS effectively addresses 

phase mismatches and non-linearities, which are common challenges in ANC systems. This 

advanced modeling ensures that the anti-noise signal is appropriately tailored to cancel the 

specific noise components, resulting in superior noise reduction performance. 

The adaptability and robustness of FxLMS make it a favored choice for various 

active noise control implementations, ranging from aircraft cabins and car interiors to 

industrial facilities. Its ability to deliver high-quality noise cancellation while efficiently 

utilizing computational resources makes it well-suited for real-time and resource-

constrained applications. 

Overall, FxLMS's effectiveness in active noise control applications has positioned 

it as a prominent algorithm in the pursuit of creating quieter and more comfortable 

environments, significantly enhancing the acoustic experience for occupants in diverse 

settings. 

3.7 Problems findings in FxLMS 

The istability iof ithe iFiltered-x iLeast iMean iSquares (FxLMS) algorithm is indeed 

highly dependent ion ithe istep isize, ialso iknown ias ithe ilearning irate ior iadaptation iconstant. 

iThe istep isize iplays ia icritical irole in determining how quickly the algorithm adapts its filter 

coefficients to track changes in the system being controlled. 

To understand the relationship between the step size and stability in FxLMS, let's 

delve into the algorithm's functioning. FxLMS is an adaptive filtering technique commonly 

used in applications like active noise control, echo cancellation, and system identification. 

It operates by continuously adjusting the filter coefficients to minimize the error between 

the desired output and the actual output. 

The step size, denoted by the symbol μ (mu), represents the magnitude of the update 

applied to the filter coefficients during each iteration of the algorithm. A larger step size 

implies that the filter coefficients will be adjusted more aggressively, leading to faster 
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convergence, which means the algorithm adapts rapidly to changes in the environment or 

input signals. 

However, a very large step size can lead to instability in the FxLMS algorithm. 

When the step size is too big, the algorithm becomes overly sensitive to variations in the 

input signal or noise, causing the filter coefficients to fluctuate significantly with each 

iteration. This oscillatory behavior can lead to divergence, where the algorithm fails to 

converge to a stable solution and instead produces unstable and unpredictable outputs. 

On the other hand, a very small step size can result in slow convergence, where the 

algorithm takes a long time to reach a satisfactory solution. This slow convergence may 

limit the algorithm's ability to effectively track rapid changes in the system or noise 

characteristics. 

3.7.1 Solving Idea 

Selecting ithe iright istep isize iplays ia icritical irole iin iensuring istability iand iachieving 

ioptimal iperformance iin ithe iFxLMS ialgorithm. iHowever, ia idynamic istep-size itechnique 

ican ioffer ia imore ielegant isolution. iBy dynamically adjusting the step size during the 

filtering process, the algorithm can adapt to variations in the system dynamics, noise levels, 

and other environmental changes in real-time.  

That's where the Kalman Filter steps in – it's like a fast learner that predicts how 

things will change and can helps the noise-canceling algorithms adjust quickly. By teaming 

up, they make sure the noise gets removed even when things are tricky, like when the noise 

or the signal changes suddenly. We got better rate of convergence and Signal to noise ratio 

(SNR) as well. 

The upcoming chapter will elaborate kalman filter and also the idea of merging the 

Kalman gain into FxLMS and how this integration enhances the algorithm's performance. 
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Chapter 4 

METHODS AND MATERIALS 

 

4.1 Kalman Filter 

 In Kalman filter, filtering means actually estimating the state vector iat ithe ipresent 

itime iwhich iis ibased iupon ithe ipast iobserved idata. iPrediction, ion ithe iother ihand, iis ithe 

iestimation iof ithe istate ivector iat ia ifuture time [24]. Most istate iestimation ialgorithms iare 

ibased ion ithe iKalman ifilter. iWe iemploy ithis istate iestimation isolely ito iacquire ithe ibest 

ipossible isolution ifrom ithe inumerous imeasures. iThe iKalman ifilter itakes iinto iaccount iall 

imeasurement idata ithat iis isent iinto iit iover itime, inot isimply ithe imost irecent ibatch iof 

imeasurements. iIt iis imore iof ian iestimating ialgorithm ithan ia ifilter. iIt ialso ikeeps ireal-time 

iestimates iof ia ivariety iof ifactors. iEstimates iare iupdated iusing ia isuccession iof inoise 

imeasurements. iIt iemploys iknowledge iof ithe ideterministic iand irandom iaspects iof isystem 

iparameters iand imeasurements ito iderive ithe ibest iestimates ipossible ifrom ithe iavailable idata. 

iIt iis ialso icalled iBayesian iestimation technique [24]. This recursive technique is more 

efficient for real-time applications such as navigation since only new measurement data 

needs to be handled on each iteration. We can get rid of the previous measurement data. 

 The iKalman ifilter iis ia iversatile itool ifor iestimating ivariables iin ivarious iprocesses. iIt 

iestimates ithe istates iof ia ilinear isystem, iminimizing iestimation ierror ivariance. iWidely iused 

iin iembedded icontrol isystems, iit imaintains iuncertainties iand icorrelations ibetween 

iparameter ierrors ifor ioptimal idata iweighting. iUnlike inon-recursive methods, Kalman filters 

iteratively update estimates using prior data [24]. 

4.2 Elements of Kalman filter 

a) State vector:  

 It iis ia iset iof iparameters iwhich idescribe ia isystem, iknown ias istates, iwhich ithe iKalman 

ifilter iestimates. iEach istate imay ibe iconstant ior imay ibe itime ivarying. iFor imany 

inavigation iapplications, ithe istate iincludes ithe icomponents iof iposition ior iposition ierror. 

iVelocity, ialtitude iand inavigation isensor ierror istates imay ialso ibe iestimated. iAlong iwith 

ithe istate ivector ithere iis ian ierror icovariance imatrix iwhich irepresents ithe iuncertainties iin 

ithe iKalman ifilter’s istate iestimate iand idegree iof icorrelation ibetween ierrors in those 
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estimates. iThis icorrelation iinformation iwithin ithe ierror icovariance imatrix iis iimportant 

ifor ithe ifollowing i3 ireasons. 

a) It ienables ithe ierror idistribution iof ithe istate iestimates ito ibe icompletely irepresented. i 

b) There iis inot ialways isufficient iinformation ifrom ithe imeasurement ito iestimate ithe 

iKalman ifilter istates iindependently. iThe icorrelation iinformation ienables iestimates 

iof ilinear icombinations iof ithese istates ito ibe imaintained iwhile iawaiting ifurther 

imeasurement iinformation. i 

c) Correlations between errors can build up over the integral between measurements. 

Understanding ithis ilets ius ifigure iout ione ierror ifrom ianother. iSince ithe iKalman ifilter 

iworks iin isteps, iwe imust iset ithe iinitial ivalues iof ithe istate iand iuncertainty matrix, 

often from another process [25]. 

b) System model: 

 This imodel iis ialso icalled ithe iprocess imodel ior itime ipropagation imodel iwhich 

idescribes ihow iKalman ifilter istates iand ierror icovariance imatrix ivary iwith itime. 

iExample- iA iposition istate iwill ivary iwith itime ias iintegral iof ia ivelocity istate, ithe iposition 

iuncertainty iwill iincrease iwith itime ias ithe iintegral iof ivelocity iuncertainty, ithe iposition 

iand ivelocity iestimation ierrors iwill ibecome imore icorrelated. iThe isystem imodel iis 

ideterministic ifor ithe istates, ias iit iis ibased ion iknown iproperties iof ithe isystem. iA istate 

iuncertainty ishould ialso ibe iincreasing iwith itime ito iaccount ifor iunknown ichanges iin ithe 

isystem iwhich icauses ithe istate iestimate ito igo iout iof idata iin ithe iabsence iof inew 

imeasurement iinformation. iThese ichanges imay ibe iunmeasured idynamics ior irandom 

inoise ion ian iinstrument ioutput i [25]. Example- A velocity uncertainty must be 

increasing over time if acceleration is unknown. This ivariation iover ithe itrue ivalues iof 

ithe istates iis icalled ias isystem inoise ior iprocess noise and its assumed random properties 

are usually defined by K.F designer. 

c) Measurement vector:  

 It iis ia iset iof isimultaneous imeasurements iof iproperties iof isystem iwhich iare ifunctions 

iof istate ivector. iAlong iwith ithe imeasurement ivector iis ia imeasurement inoise icovariance 

imatrix ithat idescribes ithe istatistics iof inoise ion ithe imeasurement. iFor imany iapplications, 

inew imeasurement iinformation iis iinput to K.F at regular intervals. But in some other 

cases the time interval between measurements can be irregular. 
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d) Measurement model:  

 It idescribes ihow ithe imeasurement ivector ivaries iwith ithe ifunction iof itrue istate ivector 

iin ithe iabsence iof imeasurement inoise. iThe iKalman ifilter iis ia iset iof imathematical 

iequations iwhich iprovides ius ian iefficient icomputational i(recursive) imeans ito iestimate 

ithe istate iof ia iprocess, iin ia iway ithat iminimizes ithe imean iof ithe isquared ierror. iThe ifilter 

iis ivery ipowerful iin ivarious iaspects: iit isupports iestimations iof ipast, ipresent, and even 

future states, and it can do so even when the precise nature of the modeled system is 

unknown to us. 

4.3 Kalman Filter Algorithm 

 The iKalman iFilter iestimates ia iprocess isimply iby iusing ifeedback icontrol ilike iform. 

iThe ioperation imay ibe idescribed ias ithe iprocess iis iestimated iby ithe ifilter iat isome iparticular 

ipoint iof itime iand ithe ifeedback iis iobtained iin ithe iform iof inoisy imeasurements. iThe iKalman 

ifilter iequations ican ibe idivided iinto itwo icategories: itime iupdate iequations iand imeasurement 

iupdate iequations. iTo iobtain ithe ia ipriori iestimates ifor ithe inext itime istep ithe itime iupdate 

iequations iproject iforward i(in itime) ithe icurrent istate iand ierror icovariance iestimates. iThe 

imeasurement iupdate iequations get the feedback to obtain an improved a posteriori estimate 

which incorporates a new measurement into the a priori estimate [26]. 

4.3.1 System Model 

 The iKalman ifilter iestimates ithe istate iof ia idiscrete-time iprocess igoverned iby ithe 

ilinear istochastic idifference iequation. 

 𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1  

where iF iis ithe istate itransition imatrix. i𝑥𝑘−1  iis ithe iprevious istate ivector. iB iis ithe icontrol-

input imatrix iapplied ito ithe icontrol ivector i𝑢𝑘−1  iand i𝑤𝑘−1 iis ithe iprocess inoise ivector. 

 The iprocess imodel iis icombined iwith ithe imeasurement imodel ito idescribe ithe istate-

measurement irelationship iat itime step k: 

 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘  

 Here i𝑧𝑘  iis ithe imeasurement ivector, iH iis ithe imeasurement imatrix, iand i𝑣𝑘  iis ithe 

imeasurement inoise ivector. iIn idifferent iliterature, i“measurement” iis ioften icalled 

i“observation” [27] [28]. Note ithat isubscripts ito ithese imatrices iare iomitted ihere iby 

iassuming ithat ithey iare iinvariant iover itime ias iin imost iapplications. iAlthough ithe icovariance 
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imatrices iare supposed to reflect the statistics of the noises, the true statistics of the noises 

is not known or not Gaussian in many practical applications. Therefore, Q and R are usually 

used as tuning parameters that the user can adjust to get desired performance. 

4.3.2 Kalman filter equations 

 Kalman ifilter iis ipopular ifor ihaving ieasy icomputation, imemory irequirements iand 

igood icapability ion iovercoming inoises. iIt iis istate itechnique iestimation ithat ican iextract 

iinformation ifrom inoisy idata i [29]. So, ia iKalman iFilter iis ithe ibest iway ito ireduce inoise ion 

isensor ireadings iin igeneral, iespecially iwhen ihow ioften ithe inoise imight ihappen ion ithe isensor 

ireading iis iunknown. iThere iare ivarious itypes iof iKalman iFilter, isuch ias istandard iKalman 

Filter [30], Extended Kalman Filter, Unscented Kalman Filter [31] etc. Standard iKalman 

iFilter iis ithe isimplest iwhile ithe iother itypes iare imodified ifor imore icomplicated itasks. iThe 

ipaper iwill iuse istandard iKalman ifilter isince iit icontains ienough ipart iof iequation for noise 

reducing. 

 Kalman ifilter ialgorithm iconsists iof itwo istages: iprediction iand iupdate. iNote ithat ithe 

iterms i“prediction” iand i“update” iare ioften icalled i“propagation” iand i“correction,” 

irespectively, iin idifferent iliterature. iThe iKalman ifilter ialgorithm iis summarized as follows: 

 

Figure 17: A complete picture of the operation of the Kalman filter. 

 

Predict: 
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 𝑥̂𝑡|𝑡−1 = 𝐹𝑡𝑥̂𝑡−1|𝑡−1 + 𝐵𝑡𝑢𝑡 4.3.1 

 𝑃𝑡|𝑡−1 = 𝐹𝑡𝑃𝑡−1|𝑡−1𝐹𝑡
𝑇 + 𝑄𝑡 4.3.2 

Update: 

 𝑥̂𝑡|𝑡 = 𝑥̂𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝐻𝑡𝑥̂𝑡|𝑡−1) 4.3.3 

 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇 + 𝑅𝑡)−1 4.3.4 

 𝑃𝑡|𝑡 = (1 − 𝐾𝑡𝐻𝑡) 𝑃𝑡|𝑡−1 4.3.5 

 where i𝑥 iis iestimated istate, i𝐹 iis istate itransition imatrix, i𝑢 iis icontrol ivariables, i𝐵 iis 

icontrol imatrix, i𝑃 iis istate ivariance imatrix, i𝑄 iis iprocess ivariance imatrix, i𝑦 iis imeasurement 

ivariables, i𝐻 iis imeasurement imatrix, i𝐾 iis iKalman igain, i𝑅 iis imeasurement imatrix, i𝑡|𝑡 iis 

icurrent itime iperiod, i𝑡 i- i1|𝑡 i- i1 iis iprevious itime iperiod, iand i𝑡|𝑡 i- i1 iis iintermediate isteps. 

 In ithe iabove iequations, ithe ihat ioperator i^ imeans ian iestimate iof ia ivariable. iThat iis, i𝑥̂ 

iis ian iestimation iof ix. iThe isuperscripts i– iand iþ idenote ipredicted i(prior) iand iupdated 

i(posterior) iestimates, irespectively. iThe ipredicted istate iestimate iis ievolved ifrom ithe 

iupdated iprevious iupdated istate iestimate. iThe inew iterm iP iis icalled istate ierror icovariance. iIt 

iencrypts ithe ierror icovariance ithat ithe ifilter ithinks ithe iestimate ierror ihas. iNote ithat ithe 

icovariance iof ia irandom ivariable ix iis idefined ias i𝑐𝑜𝑣(𝑥) = 𝐸[(𝑥 − 𝑥̂)(𝑥 − 𝑥̂)𝑇]𝑇
 iwhere iE 

idenotes ithe iexpected i(mean) ivalue iof iits iargument. iOne ican iobserve ithat ithe ierror 

icovariance ibecomes ilarger iat ithe iprediction istage idue ito ithe isummation iwith iQ, iwhich 

imeans ithe ifilter iis imore iuncertain iof ithe istate iestimate iafter ithe iprediction istep. 

 In ithe iupdate istage, ithe imeasurement iresidual i𝑦̃𝑘  iis icomputed ifirst. iThe 

imeasurement iresidual, ialso iknown ias iinnovation, iis ithe idifference ibetween ithe itrue 

imeasurement, i𝑧𝑘, iand ithe iestimated imeasurement, iH𝑥̃𝑘. iThe ifilter iestimates ithe icurrent 

imeasurement iby imultiplying ithe ipredicted istate iby ithe imeasurement imatrix. iThe iresidual, 

i𝑦̃𝑘, iis ilater ithen imultiplied iby ithe iKalman igain, i𝐾𝑘, ito iprovide ithe icorrection, i𝐾𝑘𝑦̃𝑘, ito 

ipredicted iestimate i𝑥̃𝑘. iAfter iit iobtains ithe iupdated istate iestimate, ithe iKalman ifilter 

icalculates ithe iupdated ierror icovariance, i𝑃𝑘  i, iwhich iwill ibe iused iin ithe inext itime step.  
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 Note ithat ithe iupdated ierror icovariance iis ismaller ithan ithe ipredicted ierror 

icovariance, iwhich imeans ithe ifilter iis imore icertain iof ithe istate iestimate iafter ithe 

imeasurement iis iutilized iin ithe iupdate istage. 

 The iprocess inoise icovariance imatrix, iQ, iand imeasurement inoise icovariance imatrix, 

iR, ican ibe iconstructed ifollowing ithe ireal inoise istatistics idescribed iabove ito iget ithe ibest 

iperformance. iHowever, ihave iin imind ithat iin ireal iapplications, iwe ido inot iknow ithe ireal 

istatistics iof ithe inoises iand ithe inoises iare ioften inot iGaussian. iCommon ipractice iis ito 

iconservatively iset iQ iand iR islightly ilarger ithan ithe iexpected ivalues ito iget irobustness. 

 Q iand iR iare iconstant ifor ievery itime istep. iThe imore iuncertain iyour iinitial iguess ifor 

ithe istate iis, ithe ilarger ithe iinitial ierror icovariance ishould ibe. iA isingle irun iis inot isufficient ifor 

iverifying ithe istatistic icharacteristic iof ithe ifiltering iresult ibecause ieach isample iof ia inoise 

idiffers iwhenever ithe inoise iis isampled ifrom ia igiven idistribution, iand itherefore, ievery 

isimulation irun iresults iin idifferent istate iestimate.  

 In real applications, one will be able to acquire only the estimated covariance. Also, 

getting a good estimate of Q and R is often difficult. 

4.4 Modification of Kalman filter 

 The flowchart of the Kalman filter algorithm is shown in Fig. 17 alongside 

equations (4.3.1)–(4.3.5). It can be adjusted depending on the system's complexity and 

purpose. Alfian Ma'arif et al. suggested adjusting the Kalman Filter algorithm to reduce 

sensor reading noise [32]. 

a) Predicting the state: In this stage, equation no. (4.3.1) are modified by providing 

the score Ft = 1 because there is no state transition. The adjusted equation is-   

 𝑥𝑡|𝑡−1 = 𝑥𝑡−1|𝑡−1 4.4.1 

b) Predicting the error: Since Ft = 1, then (4.3.2) becomes 

 𝑃𝑡|𝑡−1 = 𝑃𝑡−1|𝑡−1 + 𝑄𝑡 4.4.2 

c) Updating the state value: From (4.3.3), 𝐻t = 1 since the sensor data that will be 

filtered is only consisted of one sensor reading. Hence, the equation can be written 

as- 
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 𝑥𝑡|𝑡 = 𝑥𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝑥𝑡|𝑡−1) 4.4.3 

d) Calculating the gain of Kalman: Since Ht=1, then (4.3.4) can be written as- 

 𝐾𝑡 = 𝑃𝑡|𝑡−1(𝑃𝑡|𝑡−1 + 𝑅)−1 4.4.4 

e) Updating the error value: Since Ht=1, then (4.3.5) can be written as- 

 𝑃𝑡|𝑡 = (1 − 𝐾𝑡) 𝑃𝑡|𝑡−1 4.4.5 

 After ithe iadjustments iare idone, ithe iKalman iFilter iequation ifor ireducing ithe inoise iof 

isensor ireading ican ibe irewritten. iThe iKalman igain i(at ieq. i4.4.4) iis ithe iweight igiven ito ithe 

imeasurements iand icurrent-state iestimate iand ican ibe i"tuned" ito iachieve ia iparticular 

iperformance. 

 In this paper, we opted to utilize the Kalman gain to replace the traditional step-size 

  within the FxLMS algorithm. By doing so, we achieved a more flexible and adaptive 

step size that adjusts according to the characteristics of the signal components. This 

departure from a fixed step-size approach allows us to enhance the algorithm's 

responsiveness and effectiveness in managing diverse signals, enabling better noise 

reduction and signal extraction. 
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Figure 18: Proposed modified FxLMS algorithm. 

 In Figure 18. the flowchart of our modified FxLMS algorithm outlines the 

sequential steps undertaken to implement the Kalman gain as a replacement for the 

conventional step-size. This change depends on how good the measurements are and helps 

the method adjust better to different parts of the signal.  

 Imagine a situation where we have a signal, let's call it x(n), going from a source to 

a sensor through a fluid (like water or air), represented by P(z). But there's some unwanted 

noise, p(n), that the sensor picks up. To get rid of this noise, we create another kind of 

'noise', y(n), using a controller called W(z). The idea is to make this new 'noise' interfere 

with the original signal x(n) in a way that cancels out the unwanted noise. This works best 

if the controller W(z) is like a copy of the fluid medium P(z) that the signal is passing 

through. Least Mean Square used to adjust the controller's settings. But here's the catch: 

there's also another fluid medium, S(z), between the controller and the sensor. We call this 

the secondary path. So, to make everything work correctly, we need to adjust for this 

secondary path as well, and estimate its effect, which we'll call Ŝ(z). 

4.4.1 Values of Q and R 

As iwe ireplaced istep isize, i iwith iKalman-gain iin ithe ioriginal iFxLMS ialgorithm, iwe 

ineeded ito ideclare isome inecessary ivariables ito icalculate iKalman-gain iout iof ithe inoisy 
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isignal. iAlfian iMa’arif iet ial. iproposed isome iadjustments [32] on iQ i(process inoise 

icovariance) iand iR i(measurement inoise icovariance) iduring icalculating iKalman-gain ifor 

isensor ireadings ias iwell. iThe ivalue iof iQ iand iR iare ichosen iaccording ito ithe isystem 

ioperations. iCovariance iQ iand iR istates imay inot ibe iin igeneral iobservable ibut ithe 

imeasurements ishould ibe irelated to the states [33]. 

Q, ithe iprocess inoise icovariance, icontributes ito ithe ioverall iuncertainty. iWhen iQ iis 

ilarge, ithe iKalman iFilter imore iclosely itracks ilarge ichanges iin ithe idata ithan iwhen iQ iis ismall. 

iThe imeasurement inoise icovariance iR idetermines ihow imuch iinformation iis iused ifrom ithe 

imeasurement. iWhen iR iis ilarge, ithe iKalman iFilter iconsiders ithe imeasurements ito ibe 

iinaccurate. iThe ithree iimages ibelow ivisualize ithe ipositional idata. iThe ired ilines irepresent ithe 

imeasurement idata, ithe igreen ilines iare the estimated states. [34] 

Q small R large Q and R equal Q large R small 

   

Figure 19: Relations between Q and R [34] 

We ineed ito ibalance ibetween iQ iand iR iaccording ito iour ineeds. iThe ivast imajority iof 

ithe inoise iestimation imethods ihave ibeen idesigned iunder ithe iassumption iof ithe iuncorrelated 

istate iand imeasurement noise [35]. For iexample, iif ikalman iused iin itracking icars ion ia iroad, 

ithen ithe iconstant ivelocity imodel ishould ibe ireasonably igood, iand ithe ientries iof iQ ishould ibe 

ismall. iElse iif iit iis iused itracking ipeople's ifaces, ithey iare inot ilikely ito imove iwith ia iconstant 

ivelocity, iso ithe iQ ineed ito icranked up [36]. The ratio of R and Q values are crucial. The 

correct choice would be directly responsible for the filter performance and form the basic 

question of filter design [37].  

In [32], The author performed denoising using a Kalman filter. They found that the 

greater the disparity between R and Q, the greater the mean error values. Furthermore, 

regardless of the values of R and Q, the mean error is roughly the same (as shown in Fig.19). 

Based on their findings, the mean error values for the parameters that most closely match 

the original data are between 40 and 55 (see table below). 
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Table 2: Ratio between R and Q and their yielding mean error. 

No. of 

Analysis 

Kalman Filter Parameter Value R and Q 

Ratio 

Mean Error 

R Q 

1 1 1 1 26.0677 

2 1 0.1 10 44.7392 

3 1 0.01 100 53.4466 

4 10 0.1 100 53.4541 

5 100 0.1 1000 56.9959 

Through their experimental findings, it was demonstrated that for effective signal 

denoising, the Kalman filter achieves optimal outcomes when the ratio between R and Q 

is maintained at 100:1. Consequently, we adopted the same 100:1 ratio for R and Q in our 

own operations. 
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Chapter 5 

RESULTS AND DISCUSSION 

 

5.1 Introduction  

The proposed methodology is described in the previous chapter. The obtained result and 

finding of our study are introduced here with proper diagrams, pictures, and tables. 

5.2 Comparison Criteria 

 In order to be able to compare the proposed algorithm with some adaptive filtering 

algorithms discussed in chapter 4, some characteristics must be defined which can be 

evaluated for each algorithm. For the comparison two performance criteria are used in the 

study: The rate of convergence and the signal-to-noise ratio (SNR) after filtering. 

In imany inoise icancellation iapplications, ia ihigher irate iof iconvergence iis idesired. iFor 

isatisfactory iperformance iin inoise icancellation, ia ihigh irate iof iconvergence iallows ithe 

ialgorithm ito iadapt irapidly ito ia istationary ienvironment iof iunknown istatistics, ibut ithe 

iconvergence ispeed iis inot iindependent ifrom iother iperformance icharacteristics [38]. There 

will be a trade-off in other performance criteria for an improved convergence rate and there 

will ibe ia ireduced iconvergence iperformance ifor ian iincrease iin iother iperformance. iIn isome 

iapplications, ithe isystem istability iwill idrop iwhen ithe irate iof iconvergence iis idecreased, 

icausing ithe isystem imore ilikely ito idiverge irather ithan iconverging ito ia iproper isolution. iTo 

iensure ia istable isystem, ithe iparameters ithat iaffect ithe irate iof iconvergence imust ibe iwithin 

icertain ilimits. iEach ialgorithm iworks ion idifferent imethods ifor inoise icancellation iand 

reaches system stability in different ways. 

5.2.1 The Rate of Convergence 

 The irate iof iconvergence iis idefined ias ithe inumber iof iadaptation icycles irequired ifor 

ithe ialgorithm ito iconverge ifrom isome iinitial icondition ito iits isteady-state ior iclose ienough ito 

ian ioptimum, imeans ihow quickly an algorithm learns to minimize the difference between a 

desired signal and the signal it produces, like the optimum Wiener solution in the mean-

square error sense [3]. This is crucial in applications like noise cancellation or signal 

enhancement, where timely adaptation matters.  
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 To calculate the rate of convergence, one common approach is to track a metric like 

the Mean Square Deviation (MSD) or Mean Squared Error (MSE) between the desired and 

actual signals. By observing how this metric changes over iterations, you can infer the 

convergence speed. The Rate of Convergence can be quantified with the following 

equation: 

Rate of Convergence = −
1

𝑁
∑𝑛=1

𝑁  ln (|𝑒(𝑛)|2) 

Where: 𝑁 is the number of iterations, 𝑒(𝑛) is the instantaneous error signal at iteration 𝑛. 

 Where N is the number of iterations and e(n) is the error signal at iteration n. The 

equation essentially calculates the average logarithm of squared error values. 

 However, the rate of convergence isn't uniform across algorithms. Depending on 

each algorithm, the rate of convergence is influenced by different factors like step size, 

input signals, and system characteristics impact it. 

5.2.2 2.4.3 Signal-to-noise ratio SNR  

 The isignal-to-noise iratio iSNR iis ianother iimportant iperformance icriterion iin 

iadaptive inoise icancellation iand idescribes the relationship between the strength of the input 

signal and the noise signal. The SNR is defined in (5.2.1) by the ratio of the signal power 

to the noise power and is often expressed in decibel. 

 𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10

𝑆

𝑁
 

5.2.1 

 In iorder ito icompare ithe idifferent iadaptive ifiltering ialgorithms iin ithe iefficiency iof 

inoise icancellation, ithe iso-called iimprovement iSNR ilevel iin i(5.2.2) iis used, which is the 

difference between the input and output SNR [39].  

 𝑆𝑁𝑅𝑖𝑚𝑝 = 𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛 5.2.2 

 Therefore, ithe iSNR iis icalculated ibefore iand iafter iapplying ithe iadaptive ifilter. iThe 

isignal-to-noise iratio iSNR iin idecibels iis icomputed iby ithe iratio iof ithe isummed isquared 

imagnitude iof the signal to that of the noise. The input SNR is the ratio between the power 

of input signal and power of noise at the input 
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 𝑆𝑁𝑅𝑖𝑛 = 10𝑙𝑜𝑔10

∑ 𝑥(𝑛)2
𝑛

∑ 𝑣1(𝑛)2
𝑛

 
5.2.3 

 where ix(n) iis ithe inoise-corrupted isignal iand iv1 iis ithe inoise isequence. iAs ithere iis ino 

iinformation iabout ithe inoise isignal, iit iis inot ipossible ito icalculate iexactly ithe iinput iSNR, iit 

ican ionly ibe iestimated ifrom ithe isinusoid. iThe ioutput iSNR ihas ito ibe ihigher ithan ithe iinput 

iSNR, iwhich iindicates ithe isuccess iof inoise iremoval. iA ilower ivalue iof ithe ioutput iSNR 

icompared iwith ithe iinput iSNR imeans ithat ithe ifiltering iprocess iintroduces imore inoise 

iinstead iof ireducing noise. The output SNR is the ratio between the power of the filtered 

signal and power of the noise at output. 

 𝑆𝑁𝑅𝑜𝑢𝑡 = 10𝑙𝑜𝑔10

∑ 𝑦(𝑛)2
𝑛

∑ 𝑒(𝑛)2
𝑛

 
5.2.4 

 where iy(n) iis ithe ioutput isignal iof ithe iadaptive ifilter iand ie(n) iis ithe inoise isignal. iA 

ilarge ivalue iof ithe ioutput iSNR iis idesirable, iwhich iindicates ithat ithe iadaptive ifilter ican 

iremove ia ilarge iamount iof inoise iand iis iable ito iproduce ian iaccurate iestimate iof ithe idesired 

isignal. iThe isignal-to-noise iratio iincreases iwhen the output noise power decreases. 

Minimizing the output power causes the filtered signal to be perfectly noise-free [39]. 

5.3 Result and Analysis 

First section of our code generates an input signal consisting of two sinusoids. The sample 

rate was 1000Hz. Frequency of two sinusoids are 50Hz and 40Hz respectfully. A random 

noise is generated with SNR value 20.  After initial stage, various adaptive filter algorithms 

(LMS, NLMS, FxLMS, FxNLMS, and proposed modified FxLMS) are used to the noisy 

signal. 

An input signal is generated which is a composition of two sinusoidal waves. The signal is 

sampled at a rate of 1000Hz (samples per second), ensuring that the signal is well-

represented in the digital domain. The frequencies of the two sinusoids are chosen as 50Hz 

and 40Hz, resulting in a complex signal that exhibits both of these frequencies. Typical 

frequencies associated with underwater acoustics are between 10 Hz and 1 MHz. The 

propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible 

without penetrating deep into the seabed, whereas frequencies above 1 MHz are rarely used 

because they are absorbed very quickly [40]. 
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To simulate real-world scenarios, random noise is generated. The Signal-to-Noise Ratio 

(SNR) value is set to 20dB, indicating the ratio of the signal power to the noise power. This 

creates a noisy version of the original signal, which is essential for testing the performance 

of the adaptive filter algorithms in a noisy environment. 

After this initial setup, several adaptive filter algorithms are applied alongside proposed 

modified FxLMS algorithm. Figure (a) shows the original signal and a noisy version of it. 

 

Figure 20: Matlab simulated signal and noise. 

Several adaptive filters (LMS, NLMS, FxNLMS, FxLMS and modified FxLMS) are 

executed on the noisy input signal. These algorithms have been employed to enhance the quality 

of the signal by attenuating the unwanted noise components. After processing the input signal using 

each algorithm, the resulting output signals are visualized in figure (b). 



 

51 
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Figure 21: Simulation of different adaptive filtering algorithm and modified FxLMS. 

This visualization provides a direct comparison of the outputs produced by the different 

adaptive filter algorithms. Each algorithm's output is represented as a separate subplot 

within figure (b), allowing for an easy and immediate assessment on which algorithm 

produces the cleanest and most accurate output in terms of noise reduction and signal 

preservation.  

The convergence rates of each adaptive algorithm are presented below. 

Table 3: Rate of Convergence of various Adaptive Filters. 

Algorithm Rate of convergence 

Least Mean Square (LMS) 0.9022 

Normalized LMS (NLMS) 0.8841 

Filtered X LMS (FxLMS) 0.82741 

Filtered X NLMS (FxNLMS) 0.8287 

Proposed FxLMS 1.007 

The Modified Filtered-x Least Mean Squares (FxLMS) algorithm showcases a notable 

advantage in terms of convergence rate, enabling it to swiftly adapt to dynamic and noisy 

systems, resulting in a more efficient noise reduction process. Unlike the other adaptive 

filter algorithms in consideration, the Modified FxLMS algorithm demonstrates a 

remarkable ability to rapidly adjust its filter coefficients during the initial iterations. a 

separate subplot within figure (b) are presented to visualize the comparisons of rate of 

convergence. 
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Figure 22: Rate of Convergence of various Adaptive Filters 

In the attached table and graph below, displays the SNR performance of various adaptive 

algorithms including LMS, NLMS, FxLMS, FxNLMS and proposed modified FxLMS 

algorithm. Notably, the modified algorithm exhibits a distinctive advantage in terms of 

Signal-to-Noise Ratio (SNR) enhancement. 

Table 4: SNR Comparisons of various Adaptive Filters. 

Algorithm SNR 

Least Mean Square (LMS) 7.3912 

Normalized LMS (NLMS) 8.0765 

Filtered X LMS (FxLMS) 11.3217 

Filtered X NLMS (FxNLMS) 11.2546 

Proposed FxLMS 11.8788 
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Figure 23: SNR Comparisons of various Adaptive Filters. 

Among the algorithms showcased, modified algorithm stands out by consistently delivering 

a higher SNR value. While these algorithms have their own merits, our innovation seems 

to have harnessed a unique capability for optimizing SNR, which holds great promise for 

applications demanding superior noise reduction and signal fidelity. 

These results not only validate the potential of our modified algorithm but also open doors 

for further exploration and refinement. The apparent superiority in convergence rate and 

SNR performance signifies a significant stride towards enhancing adaptive algorithms in 

practical contexts where noise mitigation is pivotal. 
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Chapter 6 

CONCLUSION 

6.1 Summary of thesis 

 This thesis embarked on a comprehensive exploration and comparative analysis of 

various adaptive algorithms for system identification and noise cancellation. The aim was 

to identify an algorithm that not only showcases impressive convergence rates but also 

excels in enhancing the signal-to-noise ratio (SNR) of the system under consideration. 

Through rigorous theoretical examination and simulation-based experimentation, the study 

has successfully achieved these objectives and has shed light on the promising potential of 

the modified FXLMS algorithm. 

 The comparative study revealed crucial insights into the strengths and limitations 

of several popular adaptive algorithms, including the LMS, NLMS, RLS, and APA 

algorithms. Each algorithm showcased unique attributes in terms of convergence speed and 

robustness, laying the groundwork for a comprehensive understanding of their applicability 

in different scenarios. 

 However, upon modifying the FXLMS algorithm, it became evident that the 

proposed enhancements brought forth a remarkable leap in performance. The simulations 

conducted under matlab simulated noise conditions consistently demonstrated that the 

modified FXLMS algorithm outperformed its counterparts. The algorithm not only 

achieved faster convergence rates but also exhibited exceptional noise cancellation 

capabilities, leading to significantly improved SNR values. This superior performance can 

be attributed to the carefully designed modifications that harness the inherent strengths of 

the FXLMS framework while addressing its limitations. 

The modified FXLMS algorithm has the potential to enhance the efficiency and 

effectiveness of active noise control, thereby contributing to improved user experiences and 

system performance. 

6.2 Future Development 

 It is worth noting that while this thesis has made significant strides in evaluating 

and enhancing adaptive algorithms, further research avenues remain open. Exploring 

variations of the modified FxLMS algorithm, investigating its performance across a broader 
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range of scenarios, and delving deeper into its theoretical underpinnings could provide 

valuable insights for future studies. 

 In conclusion, by looking at theories, making changes to how the algorithm works, 

and testing it in simulations, we have discovered that the modified FXLMS algorithm has 

a lot of potential. This research adds to the growing knowledge about how to make filters 

that adjust automatically and sets the groundwork for new ways to improve how signals are 

processed and systems are understood. 

 As the field of these automatic algorithms keeps growing, the things we've learned 

here can help other scientists and people who use these algorithms. They can use this 

knowledge to create even better filters for lots of different uses. This will make signals 

clearer, lower the effects of unwanted noise, and make systems work better overall. 
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Appendix 

Appendix I: Implementation code 

% Generate input signal 

fs = 1000; % Sample rate (Hz) 

t = 0:1/fs:1; % Time vector (1 second) 

f1 = 50; % Frequency of sinusoid 1 (Hz) 

f2 = 40; % Frequency of sinusoid 2 (Hz) 

x = sin(2*pi*f1*t) + sin(2*pi*f2*t); % Input signal 

  

% Add noise to the input signal 

SNR = 10; % Signal-to-Noise Ratio (dB) 

noise = randn(size(x)); % Gaussian noise 

noise = noise / norm(noise); % Normalize noise 

noise_power = 10^(-SNR/20) * norm(x) / norm(noise); % 

Calculate noise power 

x_noisy = x + noise_power * noise; % Noisy input signal 

  

% Apply LMS algorithm 

filter_order = 64; % Filter order 

mu_lms = 0.01; % LMS step size 

[y_lms, ~] = lms(x_noisy, x, filter_order, mu_lms); % 

Apply LMS 

  

% Apply NLMS algorithm 

mu_nlms = 0.01; % NLMS step size 

[y_nlms, ~] = nlms(x_noisy, x, filter_order, mu_nlms); % 

Apply NLMS 

  

% Apply FxLMS algorithm 

mu_fx = 0.01; % FxLMS step size 

[y_fx, ~] = fxlms(x_noisy, x, filter_order, mu_fx); % 

Apply FxLMS 

  

% Apply FxNLMS algorithm 

mu_fxn = 0.01; % FxNLMS step size 

[y_fxn, ~] = fxnlms(x_noisy, x, filter_order, mu_fxn); % 

Apply FxNLMS 

  

% Apply fxlms_kalman algorithm 

kalman_gain = 100; 

[y_fxkal, ~] = fxlms_kalman(x_noisy, x, filter_order, 

kalman_gain); % Apply FxNLMS 

  

%% Calculate MSE 

  

% Calculate MSE for LMS 

mse_lms = mean((y_lms - x').^2); 

  

% Calculate MSE for NLMS 
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mse_nlms = mean((y_nlms - x').^2); 

  

% Calculate MSE for FxLMS 

mse_fx = mean((y_fx - x').^2); 

  

% Calculate MSE for FxNLMS 

mse_fxn = mean((y_fxn - x').^2); 

  

% Calculate MSE for FxLMS-Kalman 

mse_fxkal = mean((y_fxkal - x').^2); 

  

% Plot signals 

  

% plot of Original Signal 

figure(1) 

subplot(2,1,1) 

plot(t, x,'k'); 

title('Original Signal'); 

xlabel('Time (s)'); 

ylabel('Amplitude'); 

%axis([0 1000 -3 3]) 

subplot(2,1,2); 

plot(t, x_noisy,'k'); 

title('Noisy Signal'); 

xlabel('Time (s)'); 

ylabel('Amplitude'); 

  

figure (2); 

subplot(5,1,1); 

plot(t, y_lms,'k'); 

title('LMS'); 

xlabel('Time (s)'); 

ylabel('Amplitude'); 

  

subplot(5,1,2); 

plot(t, y_nlms,'k'); 

title('NLMS'); 

xlabel('Time (s)'); 

ylabel('Amplitude'); 

  

subplot(5,1,3); 

plot(t, y_fx,'k'); 

title('FxLMS'); 

xlabel('Time (s)'); 

ylabel('Amplitude'); 

  

subplot(5,1,4); 

plot(t, y_fxn,'k'); 

title('FxNLMS'); 

xlabel('Time (s)'); 

ylabel('Amplitude'); 
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subplot(5,1,5); 

plot(t, y_fxkal,'k'); 

  

SNR_fx = snr_norm(x, y_fxkal); 

title(['FxKalman Output (SNR: ', num2str(SNR_fx), ' 

dB)']); 

  

xlabel('Time (s)'); 

ylabel('Amplitude'); 

  

figure(3) 

subplot(2,1,1) 

plot(t, y_fx,'k'); 

title('FxLMS'); 

xlabel('Time (s)'); 

ylabel('Amplitude'); 

%axis([0 1000 -3 3]) 

subplot(2,1,2); 

plot(t, y_fxkal,'k'); 

title('FxLMS-Kalman'); 

xlabel('Time (s)'); 

ylabel('Amplitude'); 

  

  

% Print rate of convergence (MSE) for each algorithm 

disp(['MSE for LMS: ', num2str(mse_lms)]); 

disp(['MSE for NLMS: ', num2str(mse_nlms)]); 

disp(['MSE for FxLMS: ', num2str(mse_fx)]); 

disp(['MSE for FxNLMS: ', num2str(mse_fxn)]); 

disp(['MSE for FxLMS-Kalman: ', num2str(mse_fxkal)]); 

  

% Calculate SNR for each algorithm 

SNR_lms = snr_norm(x, y_lms); 

SNR_nlms = snr_norm(x, y_nlms); 

SNR_fx = snr_norm(x, y_fx); 

SNR_fxn = snr_norm(x, y_fxn); 

SNR_fxkal = snr_norm(x, y_fxkal); 

  

% Print SNR for each algorithm 

disp(['SNR for LMS: ', num2str(SNR_lms), ' dB']); 

disp(['SNR for NLMS: ', num2str(SNR_nlms), ' dB']); 

disp(['SNR for FxLMS: ', num2str(SNR_fx), ' dB']); 

disp(['SNR for FxNLMS: ', num2str(SNR_fxn), ' dB']); 

disp(['SNR for FxLMS-Kalman: ', num2str(SNR_fxkal), ' 

dB']); 

  

 

% Create a waveform plot for SNR values 

algorithms = {'LMS', 'NLMS', 'FxLMS', 'FxNLMS', 'FxLMS-

Kalman'}; 



 

63 
 

snr_values = [SNR_lms, SNR_nlms, SNR_fx, SNR_fxn, 

SNR_fxkal]; 

  

figure; 

hold on; 

  

% Plot stem markers 

stem(1:length(algorithms), snr_values, 'filled', 

'MarkerSize', 10); 

  

% Annotate SNR values above the markers 

for i = 1:length(algorithms) 

    text(i, snr_values(i) + 0.5, [num2str(snr_values(i)), 

' dB'], 'HorizontalAlignment', 'center'); 

end 

  

set(gca, 'XTick', 1:length(algorithms), 'XTickLabel', 

algorithms); 

title('SNR Comparison of Adaptive Filters'); 

xlabel('Algorithms'); 

ylabel('SNR (dB)'); 

grid on; 

ylim([min(snr_values) - 1, max(snr_values) + 1]); 

  

hold off; 

  

% Print SNR values 

disp('SNR values:'); 

for i = 1:length(algorithms) 

    disp([algorithms{i}, ': ', num2str(snr_values(i)), ' 

dB']); 

end 

  

% Create a waveform plot for MSE values 

algorithms = {'LMS', 'NLMS', 'FxLMS', 'FxNLMS', 'FxLMS-

Kalman'}; 

mse_values = [mse_lms, mse_nlms, mse_fx, mse_fxn, 

mse_fxkal]; 

  

figure; 

hold on; 

  

% Plot stem markers 

stem(1:length(algorithms), mse_values, 'filled', 

'MarkerSize', 10); 

  

% Annotate MSE values above the markers 

for i = 1:length(algorithms) 

    text(i, mse_values(i) + 0.5, [num2str(mse_values(i))], 

'HorizontalAlignment', 'center'); 

end 
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set(gca, 'XTick', 1:length(algorithms), 'XTickLabel', 

algorithms); 

title('Rate of convergence of Adaptive Filters'); 

xlabel('Algorithms'); 

ylabel('MSE'); 

grid on; 

ylim([min(mse_values) - 1, max(mse_values) + 1]); 

  

hold off; 

  

% Print MSE values 

disp('MSE values:'); 

for i = 1:length(algorithms) 

    disp([algorithms{i}, ': ', num2str(mse_values(i))]); 

end 

 

%######### End of Code ###### 
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