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Abstract

Underwater environments pose a distinct set of challenges in comparison to terrestrial
environments, demanding advanced solutions for data acquisition and control systems. The
significance of accurate data readings cannot be overstated, as they directly influence the
performance of controllers and augmented systems operating within these environments.
To address this, the concept of active noise control (ANC) has emerged, focusing on the
effective and adaptive management of both low- and high-frequency noise. This study
focuses on creating a strong system to reduce noise and handle disruptions in underwater
places using the proposed modified FXLMS algorithm to deal with the specific problems
caused by noise, disturbances, and unpredictable changes in sensor readings underwater.
The paper will comprehensively explore the formulation of the modified FXLMS algorithm,
emphasising its parameters and underlying equations along with some concurrent adaptive
algorithms. A thorough analysis and concise discussion of these equations will shed light
on their role in achieving noise reduction and data refinement objectives. By leveraging the
insights gained from the simulation results, the paper will demonstrate the effectiveness of
the proposed model in noise reduction and data enhancement within underwater
environments. The ability to achieve these objectives, particularly in the presence of
unpredictable variations and noise, underscores the robustness and adaptability of the
developed system.

Xi



Chapter 1
INTRODUCTION

1.1 Underwater Environment

Underwater noise refers to the complex array of sounds present in aquatic
environments, primarily caused by natural and anthropogenic sources. These sources
include marine life, geological activities, shipping vessels, industrial operations, and even
human recreational activities. The study of underwater noise is crucial as it has significant
implications for marine ecosystems, communication among marine species, and the

accurate collection of scientific data.

Recovering noise-free signals underwater is considerably more challenging compared to

terrestrial environments due to several key factors:

1. Propagation of Sound: Sound travels differently in water than in air. Water is
denser and more efficient at conducting sound, allowing it to travel longer distances
and carry more energy. This means that noise generated from distant sources can
easily propagate over vast areas, making it difficult to isolate specific signals from

the background noise.

2. Signal Attenuation and Scattering: As sound travels through water, it experiences
attenuation (reduction in intensity) and scattering (directional changes) due to the
interaction with particles and molecules in the water column. This phenomenon
leads to the distortion of signals, making it challenging to recover the original noise-

free signals accurately.

3. Multiple Noise Sources: Underwater environments host a multitude of noise
sources, both natural and anthropogenic, operating simultaneously. Biological
activities such as marine animal vocalisations, geological processes like underwater
earthquakes, and human activities like shipping, drilling, and sonar operations all
contribute to the acoustic landscape. Separating and filtering out specific signals
amidst this cacophony of noise is a daunting task.

4. Lack of Acoustic Barriers: Unlike terrestrial environments where physical barriers

like walls can help block or isolate noise sources, water lacks such barriers. Sound



waves can travel freely and spread in all directions, further complicating efforts to

recover noise-free signals.

5. Limited Sensor Performance: Underwater sensors face challenges due to the
harsh and corrosive nature of aquatic environments. Pressure, temperature, and
fouling (the buildup of marine organisms or debris on sensor surfaces) can still
impair the performance of underwater microphones (hydrophones) and other

acoustic sensors despite advances in their development.

6. Complex Data Processing: The vast amount of collected acoustic data underwater
requires sophisticated data processing techniques. Analysing and filtering this data
to distinguish desired signals from the surrounding noise demands advanced

algorithms and significant computational power.

7. Environmental Variability: Underwater environments are highly dynamic, with
conditions changing rapidly due to factors such as currents, tides, and weather.
These variations can introduce additional noise and complicate the task of

recovering noise-free signals.

Efforts to recover noise-free signals underwater involve a combination of advanced
signal processing techniques, acoustic modelling, and the deployment of specialised sensor
arrays. Researchers are continually working to develop innovative solutions to mitigate the

challenges posed by underwater noise, including real-time noise cancellation algorithms.
1.2 Active Noise Control (ANC)

Active Noise Control (ANC) is a sophisticated technology that holds significant
promise for mitigating the challenges of recovering noise-free signals in underwater
environments. Unlike passive noise reduction methods that rely on physical barriers or
materials to attenuate noise, ANC operates in real-time to actively counteract noise by
generating anti-noise signals. In underwater environments, where a complex mixture of
natural and anthropogenic noise sources can overlap and interfere with desired signals,

ANC's adaptability becomes a crucial advantage.

ANC systems typically consist of hydrophones that capture incoming noise and
feed it to a control unit. This unit then processes the noise signals, generating anti-noise
signals that are precisely tailored to the incoming noise's characteristics. When these anti-

noise signals combine with the original noise, they effectively cancel each other out,



resulting in a noise-free acoustic environment. The basic concept was first introduced by

Bernard widrow et al [1].

The ability of ANC to dynamically adjust its anti-noise signals based on real-time
noise conditions is particularly well-suited for the underwater environment. The technology
can adapt to changes in noise sources, intensity, and spatial distribution, providing a
continuous and effective noise reduction solution. This adaptability is especially important
in scenarios such as marine animal communication research, underwater surveillance, and
the monitoring of underwater infrastructure. While challenges like sensor deployment,
power supply, and algorithm complexity need to be addressed, ongoing advancements in
ANC technology hold great promise for enhancing the recovery of noise-free signals in
underwater environments. By actively countering the unique challenges posed by
underwater noise, ANC contributes to improved data accuracy, communication reliability

among marine species, and the overall understanding of aquatic ecosystems.
1.3 Background

Active Noise Control (ANC) uses feedforward to make a sound-cancelling pressure
wave with the secondary/control speaker based on a reference signal measurement from
the primary/disturbance speaker/source to lower the sound pressure at the error microphone
(Fig. 1.1)

g

actuator

Figure 1: Diagram of a duct with a dusturbance speaker, a reference microphone, a noise
cancellation actuator and an error microphone in which P denotes the primary and G the

secondary path.

The adaptive filter is an essential part of ANC since it provides noise reduction
without prior knowledge of the noise or signal. Traditional filters would cause distortion in
the desired signal output. As a result, adaptive filters are appropriate in circumstances

where communication and noise signals are random in character [2].



To increase the performance of ANC, various adaptive algorithms have been proposed.
Among them, RLS (recursive least squares) and LMS (least mean squares)-based
algorithms are popular due to their fewer complications [3]. Adaptive filtering involves
adjusting the parameters of a filter in real-time to achieve a desired output based on input
data. Both RLS and LMS algorithms are widely used for this purpose due to their distinct

characteristics and advantages.

RLS is known for its optimal parameter estimation capabilities. It takes into account
the entire history of input data, making it particularly effective in situations where the data
is correlated or stationary [2]. This makes RLS well-suited for applications requiring
accurate and precise parameter estimation, such as adaptive beamforming in
communication systems, channel equalisation, and system identification. However, RLS
has higher computational complexity compared to LMS, which can be a limitation in

resource-constrained environments [4].

Reducing the computational burden associated with matrix inversion in RLS, YT
Zhang proposed Fast RLS (FRLS) [5] that utilizes efficient matrix factorization techniques.
This makes it more suitable for real-time implementations and resource-constrained
environments. FRLS is particularly advantageous for applications that require quick and
efficient adaptation, making it ideal for scenarios with rapidly changing input conditions.
FRLS achieves computational efficiency through approximations, which can introduce
errors and impact estimation accuracy to some extent compared to the standard RLS
algorithm. But implementing FRLS with proper matrix factorization techniques requires

careful consideration and may involve more complex design compared to the standard RLS.

Paulo Sergio Ramirez proposed a Lattice-Based Recursive Least Squares (RLS)
Algorithm that utilizes lattice structures for efficient computation [6]. In this method, the
input data is processed through a series of lattice stages, with each stage representing a
different tapped delay line. The algorithm updates coefficients at each stage while
minimizing the estimation error. The lattice structure reduces computational requirements
compared to conventional RLS, making it suitable for real-time and resource-constrained
applications. Lattice-based RLS handles high-dimensional data effectively, which is crucial
in modern signal processing applications. However, while it reduces complexity compared
to traditional RLS, the lattice-based approach might still be more complex than simpler
adaptive filtering methods like the Least Mean Squares (LMS) algorithm. Implementing



and understanding the lattice-based approach might require a steeper learning curve

compared to more straightforward algorithms.

The QR decomposition-based Recursive Least Squares (RLS) Algorithm uses QR
decomposition to simplify RLS update computation [7]. The input data matrix is
decomposed into an orthogonal matrix (Q) and an upper triangular matrix (R) using this
procedure. The QR decomposition-based approach reduces computational complexity,
especially in high-dimensional scenarios, and offers improved numerical stability
compared to standard RLS algorithms. Although this approach can mitigate the sensitivity
of RLS to data perturbations, leading to improved robustness, but may require additional
memory to store the decomposition matrices, potentially affecting its applicability in
memory-constrained environments. The initial decomposition step adds some
computational overhead, which might impact the algorithm's performance during the initial

phase.

Regularized RLS (RRLS) prevents overfitting and helps maintain stable filter
adaptation. But the introduction of regularization might trade off some convergence speed
compared to the standard RLS. Block RLS processes data in blocks rather than individual
samples, reducing the overall computational load and memory requirements compared to
traditional RLS when dealing with large datasets. But processing data in blocks introduces
a delay in the adaptation process compared to standard RLS, which can impact the
algorithm’s ability to track rapidly changing system dynamics.

1.4 LMS based algorithms vs. RLS based algorithms

The convergence rate of LMS-based algorithms is significantly slower than that of
the RLS algorithm. Although the RLS algorithm has an exceptional convergence rate, it
cannot track the estimation because it is dependent on its model, input data, and, as the

computation advances, the correlation matrix [8].

Whether the least mean squares (LMS)-based algorithm is better than the recursive
least squares (RLS)-based algorithm depends on the specific context and requirements of
the application. Both algorithms are widely used in adaptive filtering and have their own

advantages and disadvantages.
1.4.1 Advantages of LMS over RLS:

1. Simplicity and Lower Complexity: LMS is generally simpler to implement and

has lower computational complexity compared to RLS. It updates the filter

5



coefficients incrementally for each new data point, making it more suitable for real-

time processing and applications with limited computational resources.

2. Adaptation Speed: LMS updates its coefficients with every new data point, which
can lead to faster adaptation to changes in the data. This is particularly useful when

the system dynamics are changing rapidly.

3. Robustness to Outliers: LMS tends to be less sensitive than RLS. It can handle
situations where the data might contain occasional large errors without significantly
affecting the parameter estimation.

1.4.2 Advantages of RLS over LMS:

1. Optimal Parameter Estimation: RLS provides optimal parameter estimation. It
takes into account the entire history of data, leading to potentially more accurate
estimates, especially when dealing with stationary or correlated data.

2. Fewer Tunable Parameters: RLS typically has fewer tuning parameters to set
compared to LMS, which may simplify the algorithm setup and reduce the need for

manual parameter tuning.

In summary, the choice between LMS and RLS depends on factors such as the
desired level of accuracy, computational resources, speed of adaptation, noise

characteristics, and the specific characteristics of the application.

LMS-based algorithms are often used in underwater environments because they can
handle the unique challenges of underwater acoustic communication in a flexible and stable
way. The underwater medium introduces severe signal propagation issues such as multipath
reflections, signal attenuation, and high noise levels. LMS algorithms excel in these
conditions as they update filter coefficients incrementally based on the most recent data
points, enabling real-time adaptation to changing channel conditions. Their ability to track
rapid variations in the channel, such as those caused by moving underwater vehicles or
changing water conditions, makes them well-suited for dynamic underwater environments.
The simplicity of LMS implementations aligns with the constraints often faced in
underwater systems, where computational resources and power may be limited. Overall,
LMS-based algorithms offer a practical and effective approach to mitigating the unique
challenges of underwater communication, making them a popular choice in underwater

acoustic signal processing and communication systems.



One key problem with LMS is its sensitivity to the scale of the input data, which
can lead to slow convergence or even divergence if the step size is not appropriately
adjusted. NLMS overcomes this problem by normalizing the step size based on the power
of the input signal, resulting in a more consistent and stable convergence rate across a wide
range of input magnitudes. NLMS tackles this problem by emphasizing larger updates for
smaller error contributions, effectively reducing the impact of noise on the adaptation
process. However, NLMS can be sensitive to noise and may require careful tuning of its
parameters to achieve optimal performance. Using Past Weight Vectors and Regularization
parameters, Manish D. Sawale and Ram N. Yadav proposed a new NLMS algorithm [9]
that offers certain advantages but also presents notable drawbacks. On the positive side,
leveraging past weight vectors can enhance convergence and tracking performance by
incorporating historical information. However, this approach comes with several
limitations. The utilization of past weight vectors and a regularization parameter can lead
to increased computational complexity, which might hinder real-time processing in
resource-constrained applications. Moreover, the integration of these additional
components may introduce additional hyperparameters that need to be optimized, adding

complexity to the algorithm's implementation and tuning process.

Normalized Least Mean Square (NLMS) algorithm based on the Kalman Filter
framework provides certain advantages [10]. One notable benefit is the potential for
improved tracking and adaptation in dynamic environments, as the Kalman Filter
inherently accounts for time-varying characteristics. However, the combined algorithm's
performance is heavily dependent on the accurate estimation of initial states and

parameters, which can be challenging in practical scenarios.

In FXLMS (Filtered-x LMS), these issues are mitigated through the introduction of
a secondary adaptive filter, often referred to as the "secondary path model™ [11]. This model
figures out the system's unwanted dynamics, like echoes or reverberations, and subtracts
them from the primary output. This way, disturbances like these have less of an effect on
the adaptation process. FXLMS also has a fractional delay component that helps fix phase
mismatches between the primary and secondary paths. This makes the algorithm work
better in situations where phase alignment is very important. By using these new ideas,
FXLMS improves convergence speed, stability, and overall performance. This makes it a
good improvement over NLMS in situations where system dynamics are complicated and

phase differences are common.



However, the complete mathematical analysis of the FXLMS algorithm and the
exact rules for the step size adjustment are not known at this time, likely due to its highly
nonlinear properties [3]. FXLMS inherited the step size, which is the most inherent
characteristic of the Least Mean Squares (LMS) algorithm, and it requires careful
adjustment. Convergence is difficult due to the small step size required for a small excess
mean square error. Large step sizes, which are necessary for rapid adaptation, may cause a
loss of stability. Consequently, modifications to this algorithm are required, in which the
step size varies during the adaptation process based on specific characteristics.

1.5 Motivation

The dynamic nature of underwater noise, influenced by factors like changing
currents, varying noise source locations, and unpredictable marine activity, demands a
solution that can respond in real-time to these fluctuations. In the literature, FXLMS is
identified as a comparatively suitable method for noise cancellation of continuing noise,

but it has limitations that must be addressed.
1.6 Objective

By addressing following objectives, the thesis aims to contribute to the field of noise
cancellation and enhance our understanding of LMS-based algorithms' effectiveness in

real-world applications.

e To simulate and compare the performance of various LMS-based methods, including:
Least Mean Square (LMS), Normalized Least Mean Square (NLMS) algorithm,
Filtered-x NLMS (FXNLMS) algorithm, Filtered-X LMS (FxLMS) algorithm.

e To investigate the rate of convergence for each of the mentioned algorithms and
evaluate the signal-to-noise ratio (SNR) for the different LMS-based algorithms.

e To develop a modified Filtered-x LMS (FXLMS) algorithm for noise cancellation.

e Toanalyze and compare the performance of the modified FXLMS algorithm against the

existing LMS-based methods in terms of both convergence rate and SNR.
1.7 Structure

The purpose of this study is to implement several adaptive filtering techniques for
noise cancellation. The thesis comprises both a theoretical and a practical section to help
the reader understand the proposed solution. In the theoretical part of the thesis, adaptive
filtering theories and the proposed algorithm are explained. In the practical part, LMS,



NLMS, FXNLMS, and FXLMS, as well as the proposed FXLMS algorithm, are used in real-

world situations.

Chapter 2, "Physics of Sound,” introduces the foundational concepts of sound
waves, pressure, and their behavior. It covers the basics of acoustics, including the
propagation of sound waves in various dimensions, the superposition principle, and the
relationship between frequency, phase, and noise cancellation performance in Active Noise

Cancellation (ANC) systems.

In Chapter 3, an introduction to adaptive filters is provided, as well as a description
of the distinctions between the various adaptive filtering methods. The adaptive filtering
theory described by Monson H. Hayes in the book “Statistical Digital Signal Processing

and Modelling” [12] is used as the key reference.

Chapter 4 "Methods and Materials" introduces the Kalman Filter, a state estimation
algorithm used for navigation and noise reduction, explaining its components. Proposed
adjustments for noise reduction are discussed, including the use of Kalman gain instead of

a fixed step size for FXLMS for effective signal denoising.

Chapter 5 "Results and Discussion” presents the outcomes of the proposed
methodology for noise cancellation in terms of various adaptive filtering algorithms
simulated in Matlab and the performance results, emphasizing comparison criteria such as
convergence rate and signal-to-noise ratio (SNR) before and after filtering, showcasing the
advantages of the Modified Filtered-x Least Mean Squares (FXLMS) algorithm in terms of

faster convergence and efficient noise reduction.

Chapter 6, The last chapter summarizes the current work and performance findings.



Chapter 2

THEORETICAL VIEW OF ACTIVE NOISE CONTROL

2.1 Introduction

Active noise control (ANC) is the technique of cancelling sound waves with a com-
pensation source. In the ideal case, the compensation signal would be of the same
magnitude as the noise, but 180° different in phase, through out an entire sound field to be
silenced. This chapter will cover the techniques used to achieve noise cancellation with real

systems.
2.2 ANC structures

In this chapter, basic single channel ANC structures are introduced. These are the
feedforward and feedback ANC structures. Then, adaptive filters are discussed, including
why and how they are used in different ANC systems. Finally, the most common algorithms
used to implement adaptive filters are covered.

2.2.1 Feedforward method

In the feedforward method a reference sensor is picking up a reference signal x(n),
which is correlated with the unwanted noise d(n) [13]. This reference signal is used to
produce a compensation signal played by a compensation source. The process is monitored
with an error sensor, which can adaptively control processes used to create the
compensation signal [13] [14]. This adaptation is commonly done with an adaptive filter,
noted as W(z).

The acoustic domain path from the reference sensor to the error sensor is known as
the primary path P(z). Most acoustic domain signal modifications are linear such as,
temporal delay, magnitude alteration and phase modifications [13] [14]. Thus, the effects

of the primary path can be represented with a linear filter.

The acoustic domain compensation signal produced by the ANC algorithm and the
compensation source is noted as y(n) [13]. Signals d(n) and y(n) behave linearly in the
acoustic domain and their residual is picked up by an error sensor. This residual error

transferred to the electrical domain is noted as e(n) [14].
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The path from the adaptive filter's output, back to the adaptation process as the error
signal is known as the secondary path S(z). This path includes effects from digital analog
converter, compensation source response, acoustic propagation path to error sensor, error
sensor response, anti-aliasing filter and finally analog digital converter [13]. Figure 2 shows

the complete feedforward ANC structure.

The sensors used for reference and error measurements are commonly
microphones, but nonacoustic meters such as tachometers and optical sensors can be used
as well [13]. However, broadband ANC is more commonly implemented with
microphones, while other sensors are used in narrowband applications like engine noise or
active vibration control [13]. The issues with microphones is that, they may suffer from
acoustic feedback caused by compensation source signal leaking to reference microphone,
whereas nonacoustic meters are less prone to feedback. Acoustic feedback can be combated
by mechanical construction or by filtering out the compensation signal from the error

microphone [13].

xn} din) e(n)
- Piz)
Wiz) —){ Siz)
- LMS -

Figure 2: Feedforward ANC diagram. Figure adopted from [13]

2.2.2 Analog feedback method

In feedback ANC structure there is an error sensor, compensation source and a
compensation signal processing block. Since no reference sensor is used, acoustic feedback
issues caused by compensation signal leaking in to reference sensor are avoided. The lack
of a reference sensor accentuates the effects of processing loop delay. In feedback ANC,

compensation signal can be produced with analog circuits and adaptive processes [13].
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Adaptive methods will be introduced in Chapter 3, while an example of the analog feedback

system is introduced here.

Figure 13 shows the novel structure of a feedback ANC. The symbols used for noise
signal d(n), compensation signal y(n), secondary path S(z) and error signal e(n) are the

same as in the feedforward structure.

Error Loudspeaker
/ Mlcrophone
\_) anary
Noise Noise
Source
| e(n) Feedback | y(n)
—  "| ANC

Figure 3: Feedback ANC diagram. Figure adopted from [13].

Analog feedback control systems have been developed, by including a phase
inverting amplifier of —A in the feedback loop, where A is the factor of amplification
applied in the feedback loop. Performance of such structure is dependent on effects
included in the secondary path, such as processing loop delay, overall phase response and
acoustic domain propagation time from compensation source to error sensor. When
frequencies get higher, smaller temporal errors cause larger shifts in phase. Since secondary
path can never be flat in real applications, there is always a limit on how high frequencies
can be attenuated with an analog feedback ANC system [13].

In practice, as frequencies get higher the 180° phase starts gradually turning in to
positive feedback, resulting in an unstable system. An intuitive solution to this problem
would be to limit the system to only allow stable frequencies. However, filters with sharp
cutoff frequencies can have phase responses, which can make even low frequencies
unstable. Sharper cutoffs also introduce more delay to the signal, further diminishing the
performance of feedback ANC. For these reasons, moderate filter rolloffs are preferred and
consequently the cutoff has to be set to a lower frequency, limiting usable band of a
feedback system [13].

As mentioned, delay in the feedback loop has to be minimized. One way to limit
the loop delay is to physically move the error sensor closer to the compensation source,

effectively reducing the delay caused by secondary path's acoustic propagation time.
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However, there is a limit on how close the error microphone can be to the compensation
source. The radiation patter of a loudspeaker may not be as uniform and well behaved in
the near field as in the far field [13].

2.2.3 Adaptive feedback method

Another way of producing compensation signal in feedback ANC is to use a linear
predictor. Linear predictors work by calculating the next sample based on previous
samples. Because there is no upstream of samples available in the feedback method, linear
predictors are only capable of attenuating the periodic components in noise [11].

2.3 Adaptive filters

Adaptive filters change their coefficients according to their input, thus they are
considered nonlinear [15]. However, at any given time instance the adaptation can be halted
and those filter coefficients can be viewed as a linear filter. Some have used nonlinear filters
for ANC but, acoustic domain processes are approximated linear in this thesis. Thus, the

filters covered in this thesis are linear as well.

In the feedforward ANC method adaptive filters are used for unknown system
modeling and in the feedback method for predicting future samples. Since the processes to
be modeled are unknown, the adaptation has to be done iteratively [15]. Speed of the
adaptation is related to the step size, commonly noted as p. This section will focus more on
why and how adaptive filters are used in ANC. Different algorithms used for adaptation

are introduced in the following sections.
2.3.1 General block diagram of the adaptive filters:

In Figure 4, w represents the coefficients of the FIR filter tap weight vector, x(n) is
the input vector sample, is a delay of one sample, y(n) is the adaptive filter output, d(n) is
the desired echoed signal and e(n) is the estimation of the error signal at time n. The aim of
an adaptive filter is to calculate the difference between the desired signal and the adaptive
filter output, e(n).The error signal is fed back into the adaptive filter and its coefficients are
changed algorithmically in order to minimize a function of this difference, which is known

as the cost function [16].
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x(n) x(n-1) x(in=N+1)

Figure 4: Block diagram of adaptive filter.

In the case of acoustic echo cancellation, the optimal output of the adaptive filter is
equal in value to the unwanted echoed signal. When the adaptive filter output is equal to
desired signal the error signal goes to zero. In the situation the echoed signal would be
completely cancelled and the far user would not hear any of their original speech returned

to them.
2.3.2 Applications of adaptive filters

a) System identification
System identification deals with the capability of an adaptive system to find FIR
filter that best reproduces of another system, whose frequency response is unknown. The

diagrammatical set up is shown in Figure 5.

When the adaptive system reaches its optimum value and the output is close to zero
an FIR filter is obtained whose weights are the result of the adaptation process that is giving
the same output as that of the ‘'unknown system' for the same input. In other words, the FIR
filter reproduces the behavior of the ‘unknown system' [17]. This design is said to be
efficiently working when the frequency response of the system to be identified matches
with that of a certain FIR filter. In case of unknown system having an all-pole filter, then
the FIR filter will approach for the best result. The system output will never be zero but it
may compromise reducing it by converging to an optimum weight vector. The frequency
response of the FIR filter will try to get the best approximate out of it but not exactly equal

to that of the 'unknown system.
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Figure 5: System identification via adaptive filter.

b) Noise cancellation in speech signals

Adaptive filtering can be extremely useful in cases where a speech signal is
submerged in a very noisy environment with many periodic components lying in the same
bandwidth as that of speech [17]. The design of adaptive noise canceller for speech signals
consists of two inputs. The desired input consists of voice that is corrupted by noise (speech
signal) and other reference input that contains noise which is related in some way to the
desired input noise. The noise reference input is made as similar as that of the desired input
noise by passing it to the system filter and that filtered version is subtracted from the
desired input. Therefore, by removing the noise from the desired input signal the noise free
signal is obtained. The setup is shown in Figure 6. From practical system noise is not

completely removed but its level is reduced considerably.

Voice + Noise 1 . "\
+ Voice

Moise 2 Filter

Figure 6: Noise cancellation via adaptive filter.

¢) Signal prediction
Predicting signals may seem to be an impossible task, without some limiting

assumptions. Assume that the signal is either steady or slowly varying over time, and
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periodic over time as well. Here the function of the adaptive filter is to provide best
prediction (in some sense) of the present value of a random signal. Accepting these
assumptions, the adaptive filter must predict the future values of the desired signal based on
past values. When s(K) is periodic signal and the filter is long enough to remember previous
values, this structure with the delay in the input signal, can perform the prediction. This
structure can also be used to remove a periodic signal from stochastic noise signals. The
present value of the signal serves the purpose of a delayed response for the adaptive filter.
Past values of the signal supply the input applied to the adaptive filter. Depending upon the
application of interest, the adaptive filter output or the estimation (prediction) error may
serve as the system output. In the first case, system operates as a predictor, in the latter case;

it operates as a prediction error filter. The setup is shown in Figure 7.

d(k)

;
stk pelay K{k}r ?:I!tapﬂve e(k)
ilter

/

Figure 7: Predicting future values of a periodic signal.

d) Interference cancellation

In this application, adaptive filter is used to cancel unknown interference contained
alongside an information signal component in a primary signal, with the cancellation being
optimized in some sense in Figure 8. The primary signal serves as the desired response for
the adaptive filter. A reference (auxiliary) signal is employed as the input to the adaptive
filter. The reference signal is derived from the sensor or set of sensors located in relation to
the sensors supplying the primary signal in such a way that the information signal

component is weak or essentially undetectable [17].

Primary Signal

)’

Adaptive
— o
Reference Signal | Filter

7

Figure 8: Interference cancellation model via adaptive filter.
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e) Channel equalization

In communication channels such as wireless, telephone and optical channels are
affected by inter-symbol interference (IS1). The channel bandwidth becomes inefficient,
without the utilization of channel equalization. Channel equalization is a process of
compensating for the effects caused by a band-limited channel, hence enabling higher data
rates [18]. These effects are due to the out-of-boundary transmission medium and the
multipath effects in the radio channel. A typical communication system is depicted in

Figure 9.

Additive
MNoise

Transmittef Channel | Recerver Equalizer |
Filter Medium Filter

Figure 9: A baseband communication system.

In the receiver the equalizer is incorporated by introducing inter-symbol
interference to the channel. The equalizer output transfer function is directly inverse to the

channel transfer function estimate.

/

Channel X(n) - Chamé-l v(n) Equalizer Output
Output | Equalizer i
e(n) ¥
» Adaptive weights e "/’}:
Supervise O
Traming

Unsupervised training []
Figure 10: Adaptive equalizer.

The equalizer is designed to be adaptive to the channel variation in the transmission

of high speed data over a band limited channel. The equalizer is recursively updated by an
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adaptive algorithm based on the observed channel output for reconstructing the output

signal. The configuration of an adaptive equalizer is depicted in Figure 14.
2.3.3 Filter types

Adaptive filters are implemented with digital filters [13]. Digital filters are either
finite impulse response (FIR) filters, meaning the output of the filter is produced from a
weighted sum of the previous input samples or infinite impulse response (lIR) filters, where

the output is a weighted sum of previous input and output samples [15].
Adaptation algorithms have been developed for both FIR and IIR filters.

2.3.3.1 FIR Adaptive filters
Finite Impulse Response FIR filters as the name suggests, have an impulse response
with finite length. A non-recursive filter has no feedback and its input-output relation is

given in (2.3.1) by the linear constant coefficient difference equation.

q
23.1
y(n) = ) bp(k)x(n—k)

The output y(n) of a non-recursive filter is independent of the past output values, it
is a function only of the input signal x(n) and the filter coefficient b(k), where k=0,1,....q.
The response of such a filter to an impulse consists of a finite sequence of g+1 samples,
where q is the filter order. A direct-form FIR adaptive filter for estimating a desired signal

d(n) from the related input signal x(n) is illustrated in the next figure.

Finding the coefficient vector w,, at sample n that produces the least amount of
mean-square error is the objective of the process of creating the FIR adaptive filter. In
equation (2.3.2), the filter output y(n) of a FIR adaptive filter is calculated in order to
estimate a desired signal d(n) based on a related signal x(n). This estimation is performed

in order to find the distance between the two signals [12].
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Figure 11: Block diagram of a direct-form FIR adaptive filter (Source: modified from

[12])

q
y(n) = Z Wn(k)x(n - k) = WZ;X(X) 2.3.2
k=0

It is assumed that both signals x(n) and d(n) are non-stationary signals and the goal

is to find the coefficient vector at time n that minimizes the mean-square error.

&(n) = E{le(n)|?} 2.3.3

The error signal in (2.3.4) is calculated from the difference between the filter output
signal y(n) and the desired signal d(n).

e(n) =d(n) —yn) = dn) —wlx(n) 2.3.4

To find the filter coefficients that minimize the mean-square error it is necessary to
set the derivative &(n) equal to zero with respect to wnx*(k) for k=0,1..., g and * represents

the complex conjugate, which leads to the result.
Efe(n)x*(n —k)} = 0 2.3.5

Substituting equation (2.3.4) in equation (2.3.5), it becomes (2.3.6) [12]
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q
dn) — Y wy(k)x(n — k)] x*(n— k)} =0

|

FIR filters are commonly used for noise cancellation applications. The FIR filter in

its non-recursive form is always stable. FIR filters can have a linear phase response and
they can be set up in order introduce no phase distortion to the signal. The FIR filter can
have any structure, like direct form, cascade form or lattice form, but the most common

form is the direct form, also known as transversal structure.

2.3.3.2 IR Adaptive filters

An 1IR filter can have an infinite number of coefficients in its impulse response. IIR
filters feature feedback that goes from the output to the input, and the output is a function of
both the most recent input samples and those that came before them [19]. The linear

constant coefficient difference equation of the IR filter is (2.3.7).

p

q
Yy =) @)y —k)+ ) by(k)x(n— k)
k=0

k=1

2.3.7

where a,, (K) and b,, (k) are the coefficients of the adaptive filter at sample n. The
output sample y(n) depends on past output samples y(n-k), as well as recent and past input
samples x(n-k), that is known as the IIR filter’s feedback. Shown in the following figure is

the block diagram of an IR adaptive filter.

d(n)

Y

+
q
o T -
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I

Figure 12: Block diagram of an IIR adaptive Filter.
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In order to minimize the mean-square error {(n) = E{|e(n)|2}, where e(n) is the
difference between the desired process d(n) and the output of the adaptive filter y(n), it is

necessary to define some vectors [12]. The filter coefficient vector @ is represented as

_ a] _ [a(l),a(Z),---,a(p) r 238
= bl = 1b(0), b(D), ..., b(q)

The data vector z(n) in (2.3.9) denotes the aggregate data vector and contains the

past output samples as well as recent and past input samples.

_m-D]_[pr-1)yn-2), ..y —p)] 239
z(n) = x(n)] | x(n = p), x(n), ., x(n — q)

The output of the filter in (2.3.10) can be expressed in terms of the filter coefficients

© and the data vector z(n)

y(n) = ah y(n—1) + b} x(n) = 0"z(n) 2.3.10

With the feedback coefficients an(k) the mean-square error is no longer quadratic,

&(n) may have multiple local minima and maxima [12] [20]. The gradient vector must be

set to zero
E{e(n)Ve*(n)} = 0 2.3.11
Since e(n) = d(n) — y(n) then
E{e(m)Vy*(n)} = 0 2.3.12
Differentiating Vy=*(n) with respect to ax(k) and b=(k) results in
% i)+ Z a* (k) * a("(;)k) =12, .,p .

5y*(n)_ . . }’(n—k) o
sb (k) 7 ("‘k)+kzo b (k)*T(k),k—O,l,...,q

Finally, combining the equations leads to
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LAYt 2T oo
E{e(n)[y(n )+ B0l * 50505 ”_O'k_l'z""'p 2.3.14

dy(n— k)7’
E{e(n) [x(n — k) +30_ b(k) * Y;Z—(k))] } —0;k=01,..,q

Since the equations are nonlinear, they are difficult to solve for the optimum filter
coefficients. Due to the nonlinearity, the solution may not be unique, therefore the solution

will rather correspond to a local rather than a global minimum.

The strength of the IR filters comes from the feedback procedure, but the
disadvantage of it is that the IR filter becomes unstable or poor in performance if it is not

well designed. A common form of the recursive IIR filter is the lattice structure.

IR filters construct their output from past input and output samples and require less
coefficients. This comes at the cost of not being able to have linear phase response and
having to check the stability of the filter. If the output samples being fed back to the filter
are amplified by their coefficients, the filter's output can grow exponentially and the filter
can become unstable. IR filters have been used in adaptive filters, but as the filter
coefficients adapt, the IR structure stability has to be constantly monitored. In practice,

this reduces the size of the step size used and thus the convergence is slower [13].

FIR filters require more coefficients compared to IIR filters, but they are always
stable. All linear behavior in phase and magnitude can be modeled with FIR filters. Even
the response of an IIR filter can be reproduced with a FIR filter, by taking sufficient amount
of coefficients from the impulse response of a given IIR filter. In this thesis only adaptive

FIR filters were investigated.
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Chapter 3

ADAPTIVE FILTERING ALGORITHMS

3.1 Adaptive filtering algorithms

Adaptive algorithms are used to modify the coefficients of the digital filter in such a way
that the error signal is minimized in accordance with some criterion. There are several
variants of adaptive filtering algorithm to choose from. Most of them can be categorized as
least mean square (LMS) and recursive least square (RLS) based. An overview of the

different types can be seen in Figure 13.

Adaptive filtering

algorithms
/"'fff—! T—

ff_,—f‘"’" \

Least Mean-square Recursive Least Square
Algorithms Algorithms

« LMS « RLS
* NLMS « FTRLS
» TVLMS
s VSSLMS

Figure 13: Types of Adaptive Filtering Algorithms.

LMS algorithms, are like smart tools that adjust certain settings in a digital filter to
make sure the difference between what we want and what we actually get becomes as small
as possible [21]. There are different types of these LMS variants, such as NLMS, TVLMS,
and VSSLMS. These algorithms use certain methods to make these adjustments, kind of

like following a path that guides them based on the current mistake.

Recursive adaptive filtering algorithms like RLS and FTRLS find coefficients that
minimize a weighted linear least squares cost function for input signals. This differs from

least mean-squares LMS, which reduces mean-square error. [22].
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LMS-based algorithms are popular since they can adapt and withstand underwater
acoustic communication challenges. Details are discussed in chapter 1. The underwater
medium introduces severe signal propagation issues such as multipath reflections, signal
attenuation, and high noise levels. LMS algorithms excel in these conditions as they update
filter coefficients incrementally based on the most recent data points, enabling real-time
adaptation to changing channel conditions, and also makes them well-suited for dynamic

underwater environments.

We will look into different LMS based methods, like the Least Mean Square(LMS)
itself, Normalized Least Mean Square(NLMS) algorithm, Filtered-X NLMS (FXNLMS)
algorithm and Filtered-X LMS (FXLMS) algorithm, and compared how well they work.

3.2 LMS algorithm

Least mean square (LMS) is an algorithm used to calculate adaptive filter
coefficients. It can be used to model unknown systems, such as the primary path of a
feedforward ANC system. The LMS algorithm uses gradient descent, a technique where it
takes steps in the direction opposite to the gradient, helping it locate a nearby lowest point
[15]. Due to it being light to calculate and simple to implement, the LMS algorithm has

established itself as the standard algorithm used in adaptive filter applications.

The LMS algorithm works by approximating the true gradient with the mean of
squared error. The resulting equation for adapting filter coefficients for the next iteration
can be represented as

w(k +1) =w(k) + 2uex(k) 3.2.1

where w(k + 1) is a vector containing the updated filter coefficients, w(k) is a
vector containing the current adaptive filter coefficients, x the factor of step size taken in
the direction of the gradient, e the instantaneous error which remains constant for all filter
coefficients throughout the iterations and x(k) is a buffer containing the most recent

reference signal samples [15].

Figure 14 shows the LMS algorithm implemented with a FIR filter, in a block
diagram form. The most resent reference signal sample x (k) is fed to the algorithm and all
previous samples of x are passed along the chain of unit delays z1. The result of the
adaptive FIR filter's output, denoted as y(k), is determined by multiplying each sample of

the filter, represented as x(k — n), with its corresponding weight, w,,(k), and then adding
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them together [15]. Mathematically this can be written as y(k) = ¥.¥_, w,x(k — n) or just
wlx.

The error sample e(k) is calculated by summing y(k) and noise sample d(k), which
is then multiplied by 24 for the adaptation process. Finally, all coefficients are moved in

the direction of negative gradient 2uex (k) as shown in equation 6. [15]

Step size udetermines adaption speed. Small xtake longer to obtain ideal filter

coefficients but are more stable.

w, (k)

x(k)

Figure 14: Block diagram of the LMS algorithm implementation with a FIR filter.
Diagram adapted from [15].

25



3.2.1 Implementation of the LMS algorithm:

The following equation illustrates LMS components.

The output signal y(n) is computed by a standard FIR filter:
M-1
ym = ) wiw) = x(n - 322
i=0
The error signal equals the difference between the reference signal d(n) and filter
output:
e(n) = d(n) - y(n) 323

After each iteration on which the sample of the error signal is computed, the filter

coefficients w(n) are updated for n=0,1,2...

wn+1) =wh) + uen) x = (n) 3.24

The step size u influences how quickly the coefficients come together. The resulting

output signal, y(n), and the error signal, e(n), are expressed using equations (3.2.2) and

(3.2.3) respectively.

3.2.2 Advantages and disadvantages of LMS algorithm

The LMS algorithm has a straightforward implementation and requires minimal
computational resources.

The LMS algorithm has overall better convergence, meaning it can converge to the
optimal solution under certain conditions.

While the LMS algorithm generally converges quickly, it can exhibit slow convergence
in certain scenarios. This can occur when dealing with highly correlated input signals
or when the step size parameter is not appropriately selected.

If the initial values of LMS filter are far from the optimal solution, it may take longer

to converge or even converge to a suboptimal solution.

3.2.3 Computational complexity of LMS algorithm

In each iteration of the LMS algorithm, the total number of multiplications is 2M,

where M is the number of filter taps.
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3.3 NLMS algorithm

The LMS is based on steepest descent algorithm. LMS algorithm is used widely for
different applications such as channel equalization and echo cancellation. This algorithm is

used due to its computational simplicity.

One of the main drawbacks of the LMS algorithm is that it uses the same step size
every time it makes changes. This can be tricky when the input signal keeps changing. To
solve this, we can change the step size as needed using time varying approach. The NLMS
method is like a smarter version of LMS. It figures out a different step size for each change
it makes. This step size depends on how much energy the input signal has. So, when the
input signal is stronger, NLMS takes smaller steps, and when it's weaker, it takes bigger

steps. This helps NLMS work better with changing signals.

In the NLMS algorithm, step size towards the gradient is normalized with the sum

of all reference signal samples squared, which can be represented as,

_ u
K a+ xTx

where « is a small value, used to prevent division with zero in the case of all zero
buffer of x. Since NLMS scales the steps size to match the magnitude of reference signal,

it only affects the filter coefficient adaptation.

In real applications size of the reference cannot be controlled, NLMS algorithm
has to be used. If NLMS is not used while the reference signal levels change, it has the
same effect as changing the LMS algorithm's step size [13]. This means, low reference

signal levels will adapt slower and high levels faster or even turn the system unstable.
3.3.1 Implementation of the NLMS algorithm

e The output of the received signal is calculated as

N-1
)

e An error signal is the difference between the reference signal and the filter output

e(n) = d(n) — y(n) 332
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e The step size is calculated as

e The filter tap weights are updated for the next iteration
wn+1) =whn) + un)e(n)x(n) 333

3.3.2 Advantages and Disadvantages of NLMS algorithm

e NLMS algorithm having low computational complexity, with good convergence
speed.

e It has minimum steady state error.

e Sensitivity to rapid changes in the input signal, leading to potential instability.

e Difficulty in handling correlated input signals, affecting adaptation performance.

e The step size selection process can be challenging and critical for optimal

performance.
3.3.3 Computational Complexity of NLMS algorithm

e Computational Complexity of NLMS is 3N+1, which is N times as much

multiplying as LMS, where N is the length of the coefficient vector.
3.4 FxNLMS algorithm

The FXNLMS (Filtered-x Normalized Least Mean Squares) algorithm is an
adaptive filtering algorithm that combines the benefits of the NLMS algorithm with an

additional filtering step to enhance its performance in various scenarios.

In the FXNLMS algorithm, the input signal is filtered by an FIR filter to create a
filtered reference signal. This filtered reference signal is then used to adaptively adjust the
filter coefficients based on the error between the desired signal and the filter output. The
key idea behind FXNLMS is that by using the filtered reference signal, the algorithm can
effectively adapt to changes in the input signal and improve its ability to track dynamic

variations.

The FXNLMS update equation involves the adjustment of the filter coefficients in
proportion to the error signal and the filtered reference signal. Importantly, the step size

parameter is normalized by the energy of the filtered reference signal to ensure stable and
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controlled adaptation. Additionally, a small positive constant is introduced to prevent

division by zero.
3.4.1 Implementation of the FXNLMS algorithm
The FXNLMS algorithm equations are as follows:

e Filtering the Reference Signal: FXNLMS introduces a reference signal u(n)

which is filtered through an FIR filter F to create a filtered reference signal us (n):
ur(n) = F - u(n)
where F is the FIR filter coefficients and u(n) is the original reference signal.

e Error Calculation: The error signal e(n) is the difference between the desired
signal d(n) and the output y(n):
e(n) = d(n) —y(n)
e Update Coefficients: The coefficients w(n) of the adaptive filter are updated

using the FXNLMS update equation:

u
€+ u]? (M)us(n)

wn+ 1) =wh)+ -e(m)ug(n) 3.4.1

Where,

e w(n) is the coefficient vector at time n.
e u, is the filtered reference signal.

e ¢e(n) is the error signal.

e mu is the step size parameter.

e epsilon is a positive constant.

This algorithm adaptively adjusts the filter coefficients based on the error between
the desired signal and the filter output. The filtering of the reference signal u(n) with the
FIR filter F provides improved tracking and convergence behavior compared to the basic
NLMS algorithm.

3.4.2 Advantages and disadvantages of FXNLMS algorithm

e FXNLMS's filtered reference signal accelerates convergence and improves tracking

in changing environments.
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e The algorithm's filtering step enhances noise suppression and improves signal-to-
noise performance.
e The filtered reference signal requires additional memory storage.

e May not be as effective in handling highly nonlinear systems or signals.
3.4.3 Computational complexity of FXNLMS algorithm

The filtering operation and coefficient update are performed for each of the N
iterations, resulting in a computational complexity of O(LN). Compared to the basic NLMS
algorithm, the FIR filtering step adds some overhead, but the benefits of improved
convergence and noise robustness may justify the increased complexity.

3.5 FxXLMS algorithm

The optimal solution for adaptive filter is W(z) = P(2)/S(Z). Since S(z) is constantly
part of the ANC system it would be more efficient if W(z) would not have to adapt to
reversing relatively constant effects of S(z) [13].

An intuitive solution to this would be to create an inverse filter for S(z)0. However,
in all real application S(z) produces latency, from steps such as acoustic flight time between
compensation source and error sensor. Thus, in order to create an inverse filter for S(z), the
inverse filter would be required to reverse latency, i.e. predict future samples. This is not
possible to be implemented unless, W(z) has modeled some latency, which can compensate

for the needed prediction.

Effects of 1/S(z) can be removed from W(z), by placing an estimate of secondary
path S(z), prior to the LMS algorithm [23]. Since S(z) is placed in front of x(n) the algorithm
is called filtered x LMS (FXLMS). S(z), can be modeled offline, prior to starting the system.
It has been shown that offline model of S(z) does not have to be perfect. In testing, the
FxLMS algorithm was able to converge even with 90° phase error. Figure 15 shows a block
diagram of a feedforward FXLMS system.
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Figure 15: Block diagram of a FXLMS feedforward ANC system. Diagram adapted from
[13].

If the secondary path of a feedback system can be modeled, a reference signal
correlated with d(n) can be synthesized. The synthesized reference can then be used to
simulate a feedforward type structure. In a feedback ANC system, only e(n) and y(n) are
known. Since, d(n) = e(n) + s(n) * y(n), a reference signal x(n) can be created as
x(n)=d ()= e(n) + §(n) * y(n), where d(n) is an approximation of the noise signal and
3(n) the modeled secondary path. This system can function as a feedforward system,
however since the reference is synthesized and not measured, there is no advantage of a
physical look-ahead from having a microphone further away from the silenced zone. Figure
13 shows a block diagram of the introduced feedback FXLMS system.

Why S(z) is added to the adaptation algorithm can be understood as the following.
Since W(z) and S(z) are both linear, the order in which signals are processed through them
does not make a difference. If S(z) was before W(z) in 8 block diagram, it could be easier
to see that, if effects of S(z) were also applied to the adaptation algorithm, it would be
effectively the same as applying S(z) to both paths. Because S(z) cannot be removed from
the system, adding S(z) prior to the adaptation algorithm includes the same filtering effects
to both paths. Once W has converged the W(z)S(z) = P(z) or W(z)S(z) = —P(z), depending

on whether or not a separate inverter was used.
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Figure 16: Block diagram of an offline calculation setup for estimating system's

secondary path. Diagram adapted from [13].

One method for realizing the offline estimation is to internally create a broadband
signal, such as white noise, to be used as a reference signal. The broadband signal can be
passed to the adaptive filter and the compensation source. Once the adaptation has
converged, the adaptive filter has created an estimate of S(z). Since only a compensation
source and error sensor are used, this method can be realized for both, feedforward and
feedback systems. Figure 16 shows the described algorithm, with secondary path effects

shown in the upper dotted line rectangle.

FXLMS extends the LMS method by adding a secondary path model. This extra
model helps create an adaptive filter to eliminate unwanted noise or interference. It works
by using a reference signal that matches the noise, which goes through the adaptive filter
to create a guess of the noise. This estimated noise is then subtracted from the main input
signal to get the signal we want. FXLMS is really good at getting rid of noise and is often

used for active noise control.

32



3.5.1 Advantages and disadvantages of FXLMS algorithm

e Effective in reducing the impact of a known reference noise signal on the adaptive
filter output.

e Can adjust the filter coefficients to be balanced to track changes in the reference
noise signal.

e Performance heavily relies on the accuracy of the reference noise signal estimation.

e Limited effectiveness when dealing with non-stationary or time-varying noise

signals.
3.5.2 Computational complexity of the FxLMS algorithm

The computational complexity of the FXLMS algorithm is similar to that of the LMS
algorithm, with additional computations for the reference signal filtering. The complexity
per iteration can be expressed as O(M + N), where M is the number of filter taps and N is

the length of the reference signal.
3.6 Comparing Adaptive Filtering Algorithms:

In the realm of adaptive filtering algorithms, various methods have been developed
to efficiently adapt to changing environments and process data in real-time applications.
This table summarize comprehensive comparison of four widely used adaptive filtering
techniques that already discussed above: Least Mean Squares (LMS), Recursive Least
Squares (RLS), Normalized Least Mean Squares (NLMS), Filtered-x Normalized Least
Mean Squares (FXLMS) and Filtered-x Least Mean Squares (FXLMS). Each algorithm has
its unique strengths and limitations, making it crucial for engineers and researchers to

understand their characteristics thoroughly.

The comparison on Table 1 focuses on key criteria to evaluate the algorithms'
performance, encompassing Computational Complexity, Convergence Rate, Signal-to-
Noise Ratio (SNR) handling capabilities, Cost considerations, overall Effectiveness in

various applications, and Limitations that may affect their practical utility.
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Table 1: Summary of different Adaptive Filtering Algorithms.

FXNLMS
%) NLMS i FXLMS
S LMS ) (Filtered-x )
= (Normalized . (Filtered-x
‘= (Least Mean Normalized
<) Least Mean Least Mean
Parameter | 2 Squares): Least Mean
< Squares) Squares)
Squares)
Computational Low to
P . Low Low Moderate
Complexity Moderate
Slower
Slower -
Convergence compared to compared 1o Similar to Moderate
Rate RLS and Affine |f)|v| . LMS
projection
Good
erformance
Moderate Moderate P Good
SNR when used for
performance performance . . performance
active noise
control
Cost Low Low Moderate Moderate
. Effective in Fast
Simple and Improved : .
. - active noise | convergence,
widely used, stability and .
. . . control suitable for
Effectiveness suitable for basic | robustness .
P applications, sparse and
adaptive filtering | compared to cancels noise | time-varvin
tasks LMS . . ying
or interference | environments
. Limited to
Slightly . .
active noise
Slower slower
control May not be as
convergence convergence . .
applications, effective in
compared to than LMS, .
. may not be as handling
L other algorithms, | may not be as . i
Limitation . versatile as highly
may struggle effective in .
L. . other nonlinear
with highly highly .
: g algorithms for | systems or
dynamic dynamic .
: : general signals.
environments environments .
adaptive
filtering tasks

ANC aims to reduce unwanted noise by generating an anti-noise signal that cancels
out the incoming noise, leading to a quieter and more pleasant environment. Though

FXLMS may not be as versatile as other algorithms for general adaptive filtering tasks but
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excels in this domain due to its adaptability and real-time response capabilities. It
efficiently tracks changes in noise characteristics by adaptively updating its filter
coefficients, enabling precise estimation of the anti-noise signal required for effective noise

cancellation.

One of FXLMS's key strengths lies in its ability to accurately model the secondary
path between the noise source and the error microphone. By employing a filtered reference
signal that accounts for the secondary path's transfer function, FXLMS effectively addresses
phase mismatches and non-linearities, which are common challenges in ANC systems. This
advanced modeling ensures that the anti-noise signal is appropriately tailored to cancel the

specific noise components, resulting in superior noise reduction performance.

The adaptability and robustness of FXLMS make it a favored choice for various
active noise control implementations, ranging from aircraft cabins and car interiors to
industrial facilities. Its ability to deliver high-quality noise cancellation while efficiently
utilizing computational resources makes it well-suited for real-time and resource-

constrained applications.

Overall, FXLMS's effectiveness in active noise control applications has positioned
it as a prominent algorithm in the pursuit of creating quieter and more comfortable
environments, significantly enhancing the acoustic experience for occupants in diverse

settings.
3.7 Problems findings in FXLMS

The stability of the Filtered-x Least Mean Squares (FXLMS) algorithm is indeed
highly dependent on the step size, also known as the learning rate or adaptation constant.
The step size plays a critical role in determining how quickly the algorithm adapts its filter
coefficients to track changes in the system being controlled.

To understand the relationship between the step size and stability in FXLMS, let's
delve into the algorithm's functioning. FXLMS is an adaptive filtering technique commonly
used in applications like active noise control, echo cancellation, and system identification.
It operates by continuously adjusting the filter coefficients to minimize the error between

the desired output and the actual output.

The step size, denoted by the symbol p (mu), represents the magnitude of the update
applied to the filter coefficients during each iteration of the algorithm. A larger step size

implies that the filter coefficients will be adjusted more aggressively, leading to faster
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convergence, which means the algorithm adapts rapidly to changes in the environment or

input signals.

However, a very large step size can lead to instability in the FXLMS algorithm.
When the step size is too big, the algorithm becomes overly sensitive to variations in the
input signal or noise, causing the filter coefficients to fluctuate significantly with each
iteration. This oscillatory behavior can lead to divergence, where the algorithm fails to

converge to a stable solution and instead produces unstable and unpredictable outputs.

On the other hand, a very small step size can result in slow convergence, where the
algorithm takes a long time to reach a satisfactory solution. This slow convergence may
limit the algorithm's ability to effectively track rapid changes in the system or noise

characteristics.
3.7.1 Solving Idea

Selecting the right step size plays a critical role in ensuring stability and achieving
optimal performance in the FXLMS algorithm. However, a dynamic step-size technique
can offer a more elegant solution. By dynamically adjusting the step size during the
filtering process, the algorithm can adapt to variations in the system dynamics, noise levels,

and other environmental changes in real-time.

That's where the Kalman Filter steps in — it's like a fast learner that predicts how
things will change and can helps the noise-canceling algorithms adjust quickly. By teaming
up, they make sure the noise gets removed even when things are tricky, like when the noise
or the signal changes suddenly. We got better rate of convergence and Signal to noise ratio
(SNR) as well.

The upcoming chapter will elaborate kalman filter and also the idea of merging the
Kalman gain into FXLMS and how this integration enhances the algorithm's performance.
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Chapter 4

METHODS AND MATERIALS

4.1 Kalman Filter

In Kalman filter, filtering means actually estimating the state vector at the present
time which is based upon the past observed data. Prediction, on the other hand, is the
estimation of the state vector at a future time [24]. Most state estimation algorithms are
based on the Kalman filter. We employ this state estimation solely to acquire the best
possible solution from the numerous measures. The Kalman filter takes into account all
measurement data that is sent into it over time, not simply the most recent batch of
measurements. It is more of an estimating algorithm than a filter. It also keeps real-time
estimates of a variety of factors. Estimates are updated using a succession of noise
measurements. It employs knowledge of the deterministic and random aspects of system
parameters and measurements to derive the best estimates possible from the available data.
It is also called Bayesian estimation technique [24]. This recursive technique is more
efficient for real-time applications such as navigation since only new measurement data

needs to be handled on each iteration. We can get rid of the previous measurement data.

The Kalman filter is a versatile tool for estimating variables in various processes. It
estimates the states of a linear system, minimizing estimation error variance. Widely used
in embedded control systems, it maintains uncertainties and correlations between
parameter errors for optimal data weighting. Unlike non-recursive methods, Kalman filters

iteratively update estimates using prior data [24].
4.2 Elements of Kalman filter

a) State vector:

It is a set of parameters which describe a system, known as states, which the Kalman
filter estimates. Each state may be constant or may be time varying. For many
navigation applications, the state includes the components of position or position error.
Velocity, altitude and navigation sensor error states may also be estimated. Along with
the state vector there is an error covariance matrix which represents the uncertainties in

the Kalman filter’s state estimate and degree of correlation between errors in those
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estimates. This correlation information within the error covariance matrix is important

for the following 3 reasons.

a) Itenables the error distribution of the state estimates to be completely represented.

b) There is not always sufficient information from the measurement to estimate the
Kalman filter states independently. The correlation information enables estimates
of linear combinations of these states to be maintained while awaiting further
measurement information.

c) Correlations between errors can build up over the integral between measurements.
Understanding this lets us figure out one error from another. Since the Kalman filter
works in steps, we must set the initial values of the state and uncertainty matrix,
often from another process [25].

b) System model:

This model is also called the process model or time propagation model which
describes how Kalman filter states and error covariance matrix vary with time.
Example- A position state will vary with time as integral of a velocity state, the position
uncertainty will increase with time as the integral of velocity uncertainty, the position
and velocity estimation errors will become more correlated. The system model is
deterministic for the states, as it is based on known properties of the system. A state
uncertainty should also be increasing with time to account for unknown changes in the
system which causes the state estimate to go out of data in the absence of new
measurement information. These changes may be unmeasured dynamics or random
noise on an instrument output [25]. Example- A velocity uncertainty must be
increasing over time if acceleration is unknown. This variation over the true values of
the states is called as system noise or process noise and its assumed random properties

are usually defined by K.F designer.

c) Measurement vector:

It is a set of simultaneous measurements of properties of system which are functions
of state vector. Along with the measurement vector is a measurement noise covariance
matrix that describes the statistics of noise on the measurement. For many applications,
new measurement information is input to K.F at regular intervals. But in some other

cases the time interval between measurements can be irregular.
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d) Measurement model:

It describes how the measurement vector varies with the function of true state vector
in the absence of measurement noise. The Kalman filter is a set of mathematical
equations which provides us an efficient computational (recursive) means to estimate
the state of a process, in a way that minimizes the mean of the squared error. The filter
is very powerful in various aspects: it supports estimations of past, present, and even
future states, and it can do so even when the precise nature of the modeled system is

unknown to us.
4.3 Kalman Filter Algorithm

The Kalman Filter estimates a process simply by using feedback control like form.
The operation may be described as the process is estimated by the filter at some particular
point of time and the feedback is obtained in the form of noisy measurements. The Kalman
filter equations can be divided into two categories: time update equations and measurement
update equations. To obtain the a priori estimates for the next time step the time update
equations project forward (in time) the current state and error covariance estimates. The
measurement update equations get the feedback to obtain an improved a posteriori estimate

which incorporates a new measurement into the a priori estimate [26].
4.3.1 System Model

The Kalman filter estimates the state of a discrete-time process governed by the

linear stochastic difference equation.
X = ka—l + Buk_l + Wgk_1
where F is the state transition matrix. x,_, is the previous state vector. B is the control-
input matrix applied to the control vector u;_, and wy,_; is the process noise vector.
The process model is combined with the measurement model to describe the state-
measurement relationship at time step k:

Zy =ka+'l7k

Here z, is the measurement vector, H is the measurement matrix, and vy is the
measurement noise vector. In different literature, “measurement” is often called
“observation” [27] [28]. Note that subscripts to these matrices are omitted here by

assuming that they are invariant over time as in most applications. Although the covariance
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matrices are supposed to reflect the statistics of the noises, the true statistics of the noises
is not known or not Gaussian in many practical applications. Therefore, Q and R are usually

used as tuning parameters that the user can adjust to get desired performance.
4.3.2 Kalman filter equations

Kalman filter is popular for having easy computation, memory requirements and
good capability on overcoming noises. It is state technique estimation that can extract
information from noisy data [29]. So, a Kalman Filter is the best way to reduce noise on
sensor readings in general, especially when how often the noise might happen on the sensor
reading is unknown. There are various types of Kalman Filter, such as standard Kalman
Filter [30], Extended Kalman Filter, Unscented Kalman Filter [31] etc. Standard Kalman
Filter is the simplest while the other types are modified for more complicated tasks. The
paper will use standard Kalman filter since it contains enough part of equation for noise

reducing.

Kalman filter algorithm consists of two stages: prediction and update. Note that the
terms “prediction” and “update” are often called “propagation” and “correction,”
respectively, in different literature. The Kalman filter algorithm is summarized as follows:

Measurement Update (“Correct™)

Time Update (*Predict™) .
ime Lpdate redic (1) Compute the Kalman gain

'0j Sle < 7 N 3 -1
(1)P10_|?ct the state ahead I&k — PkHT(HPkHI +R)
X, = AY,._ [ +Bu._,

(2) Update estimate with measurement z
2) Project tl or covariance ahead .= % ” (7 T
(2 O_]e(i'[ the error covariance ahea = A+ ]&;\_(w\_ — H-‘l;,-)

P e AP E_ IAT + Q (3) Update the error covariance
P, = (I-K.H)P,

Initial estimates for & r_1 and PA__ 1

Figure 17: A complete picture of the operation of the Kalman filter.

Predict:
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Xeje—1 = FeXeoqje-1 + Bey 4.3.1

Pye—1 = FePeoqpea FT + Q¢ 432
Update:
Reje = Repe—1 + Ke(ve — HeReje-1) 433
K¢ = Pye—1HY (HePye—1Hf + R ™! 4.3.4
Pye = (1 — K¢Hy) Pyje—a 435

where v is estimated state, #'is state transition matrix, « is control variables, Zis
control matrix, /2 is state variance matrix, ¢ is process variance matrix, y is measurement
variables, 4 is measurement matrix, 4" is Kalman gain, # is measurement matrix, £z is

current time period, #- 1|#- 1 is previous time period, and 4 - 1 is intermediate steps.

In the above equations, the hat operator  means an estimate of a variable. That is, £
is an estimation of x. The superscripts — and p denote predicted (prior) and updated
(posterior) estimates, respectively. The predicted state estimate is evolved from the
updated previous updated state estimate. The new term P is called state error covariance. It
encrypts the error covariance that the filter thinks the estimate error has. Note that the
covariance of a random variable x is defined as cov(x) = E[(x — £)(x — £)T]" where E
denotes the expected (mean) value of its argument. One can observe that the error
covariance becomes larger at the prediction stage due to the summation with Q, which

means the filter is more uncertain of the state estimate after the prediction step.

In the update stage, the measurement residual ¥, is computed first. The
measurement residual, also known as innovation, is the difference between the true
measurement, z,, and the estimated measurement, Hx,. The filter estimates the current
measurement by multiplying the predicted state by the measurement matrix. The residual,
Vi, 1S later then multiplied by the Kalman gain, K}, to provide the correction, K, to
predicted estimate X,. After it obtains the updated state estimate, the Kalman filter

calculates the updated error covariance, Py , which will be used in the next time step.
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Note that the updated error covariance is smaller than the predicted error
covariance, which means the filter is more certain of the state estimate after the

measurement is utilized in the update stage.

The process noise covariance matrix, Q, and measurement noise covariance matrix,
R, can be constructed following the real noise statistics described above to get the best
performance. However, have in mind that in real applications, we do not know the real
statistics of the noises and the noises are often not Gaussian. Common practice is to

conservatively set Q and R slightly larger than the expected values to get robustness.

Q and R are constant for every time step. The more uncertain your initial guess for
the state is, the larger the initial error covariance should be. A single run is not sufficient for
verifying the statistic characteristic of the filtering result because each sample of a noise
differs whenever the noise is sampled from a given distribution, and therefore, every

simulation run results in different state estimate.

In real applications, one will be able to acquire only the estimated covariance. Also,

getting a good estimate of Q and R is often difficult.
4.4 Modification of Kalman filter

The flowchart of the Kalman filter algorithm is shown in Fig. 17 alongside
equations (4.3.1)—(4.3.5). It can be adjusted depending on the system's complexity and
purpose. Alfian Ma'arif et al. suggested adjusting the Kalman Filter algorithm to reduce

sensor reading noise [32].

a) Predicting the state: In this stage, equation no. (4.3.1) are modified by providing

the score Ft = 1 because there is no state transition. The adjusted equation is-
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Xt|t—1 = Xe-1|t—1

b) Predicting the error: Since Ft = 1, then (4.3.2) becomes

Pye—1 = Poqpe—1 + Q; 4.4.2

c) Updating the state value: From (4.3.3), Ht = 1 since the sensor data that will be
filtered is only consisted of one sensor reading. Hence, the equation can be written

as-
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Xt|t = Xeje-1 + K:(y: — xt|t—1) 4.4.3

d) Calculating the gain of Kalman: Since Hi=1, then (4.3.4) can be written as-

K = Pee—1(Peje—1 + R)7! 4.4.4
e) Updating the error value: Since Hi=1, then (4.3.5) can be written as-
Pye = (1 = K) Prje-1 445

After the adjustments are done, the Kalman Filter equation for reducing the noise of
sensor reading can be rewritten. The Kalman gain (at eq. 4.4.4) is the weight given to the
measurements and current-state estimate and can be "tuned" to achieve a particular

performance.

In this paper, we opted to utilize the Kalman gain to replace the traditional step-size
4 within the FXLMS algorithm. By doing so, we achieved a more flexible and adaptive
step size that adjusts according to the characteristics of the signal components. This
departure from a fixed step-size approach allows us to enhance the algorithm's
responsiveness and effectiveness in managing diverse signals, enabling better noise

reduction and signal extraction.
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Figure 18: Proposed modified FXLMS algorithm.

In Figure 18. the flowchart of our modified FXLMS algorithm outlines the
sequential steps undertaken to implement the Kalman gain as a replacement for the
conventional step-size. This change depends on how good the measurements are and helps

the method adjust better to different parts of the signal.

Imagine a situation where we have a signal, let's call it x(n), going from a source to
a sensor through a fluid (like water or air), represented by P(z). But there's some unwanted
noise, p(n), that the sensor picks up. To get rid of this noise, we create another kind of
'noise’, y(n), using a controller called W(z). The idea is to make this new 'noise' interfere
with the original signal x(n) in a way that cancels out the unwanted noise. This works best
if the controller W(z) is like a copy of the fluid medium P(z) that the signal is passing
through. Least Mean Square used to adjust the controller's settings. But here's the catch:
there's also another fluid medium, S(z), between the controller and the sensor. We call this
the secondary path. So, to make everything work correctly, we need to adjust for this

secondary path as well, and estimate its effect, which we'll call S(z).
4.4.1 Valuesof Qand R

As we replaced step size, p with Kalman-gain in the original FXLMS algorithm, we

needed to declare some necessary variables to calculate Kalman-gain out of the noisy
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signal. Alfian Ma’arif et al. proposed some adjustments [32] on Q (process noise
covariance) and R (measurement noise covariance) during calculating Kalman-gain for
sensor readings as well. The value of Q and R are chosen according to the system
operations. Covariance Q and R states may not be in general observable but the

measurements should be related to the states [33].

Q, the process noise covariance, contributes to the overall uncertainty. When Q is
large, the Kalman Filter more closely tracks large changes in the data than when Q is small.
The measurement noise covariance R determines how much information is used from the
measurement. When R is large, the Kalman Filter considers the measurements to be
inaccurate. The three images below visualize the positional data. The red lines represent the

measurement data, the green lines are the estimated states. [34]

Q small R large Q and R equal Q large R small

Figure 19: Relations between Q and R [34]

We need to balance between Q and R according to our needs. The vast majority of
the noise estimation methods have been designed under the assumption of the uncorrelated
state and measurement noise [35]. For example, if kalman used in tracking cars on a road,
then the constant velocity model should be reasonably good, and the entries of Q should be
small. Else if it is used tracking people's faces, they are not likely to move with a constant
velocity, so the Q need to cranked up [36]. The ratio of R and Q values are crucial. The
correct choice would be directly responsible for the filter performance and form the basic

question of filter design [37].

In [32], The author performed denoising using a Kalman filter. They found that the
greater the disparity between R and Q, the greater the mean error values. Furthermore,
regardless of the values of R and Q, the mean error is roughly the same (as shown in Fig.19).
Based on their findings, the mean error values for the parameters that most closely match

the original data are between 40 and 55 (see table below).
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Table 2: Ratio between R and Q and their yielding mean error.

No. of | Kalman Filter Parameter Value Rand Q Mean Error
Analysis Ratio
R Q
1 1 1 1 26.0677
2 1 0.1 10 44,7392
3 1 0.01 100 53.4466
4 10 0.1 100 53.4541
5 100 0.1 1000 56.9959

Through their experimental findings, it was demonstrated that for effective signal

denoising, the Kalman filter achieves optimal outcomes when the ratio between R and Q

is maintained at 100:1. Consequently, we adopted the same 100:1 ratio for R and Q in our

own operations.
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Chapter 5

RESULTS AND DISCUSSION

5.1 Introduction

The proposed methodology is described in the previous chapter. The obtained result and

finding of our study are introduced here with proper diagrams, pictures, and tables.
5.2 Comparison Criteria

In order to be able to compare the proposed algorithm with some adaptive filtering
algorithms discussed in chapter 4, some characteristics must be defined which can be
evaluated for each algorithm. For the comparison two performance criteria are used in the

study: The rate of convergence and the signal-to-noise ratio (SNR) after filtering.

In many noise cancellation applications, a higher rate of convergence is desired. For
satisfactory performance in noise cancellation, a high rate of convergence allows the
algorithm to adapt rapidly to a stationary environment of unknown statistics, but the
convergence speed is not independent from other performance characteristics [38]. There
will be a trade-off in other performance criteria for an improved convergence rate and there
will be a reduced convergence performance for an increase in other performance. In some
applications, the system stability will drop when the rate of convergence is decreased,
causing the system more likely to diverge rather than converging to a proper solution. To
ensure a stable system, the parameters that affect the rate of convergence must be within
certain limits. Each algorithm works on different methods for noise cancellation and

reaches system stability in different ways.
5.2.1 The Rate of Convergence

The rate of convergence is defined as the number of adaptation cycles required for
the algorithm to converge from some initial condition to its steady-state or close enough to
an optimum, means how quickly an algorithm learns to minimize the difference between a
desired signal and the signal it produces, like the optimum Wiener solution in the mean-
square error sense [3]. This is crucial in applications like noise cancellation or signal

enhancement, where timely adaptation matters.
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To calculate the rate of convergence, one common approach is to track a metric like
the Mean Square Deviation (MSD) or Mean Squared Error (MSE) between the desired and
actual signals. By observing how this metric changes over iterations, you can infer the
convergence speed. The Rate of Convergence can be quantified with the following

equation:
Rate of Convergence = — %Zﬁ=1ln(|e(n)|2)

Where: N is the number of iterations, e(n) is the instantaneous error signal at iteration n.

Where N is the number of iterations and e(n) is the error signal at iteration n. The
equation essentially calculates the average logarithm of squared error values.

However, the rate of convergence isn't uniform across algorithms. Depending on
each algorithm, the rate of convergence is influenced by different factors like step size,

input signals, and system characteristics impact it.
5.2.2 2.4.3 Signal-to-noise ratio SNR

The signal-to-noise ratio SNR is another important performance criterion in
adaptive noise cancellation and describes the relationship between the strength of the input
signal and the noise signal. The SNR is defined in (5.2.1) by the ratio of the signal power
to the noise power and is often expressed in decibel.

s
SNRgs = 10l0g10 5.2.1

In order to compare the different adaptive filtering algorithms in the efficiency of
noise cancellation, the so-called improvement SNR level in (5.2.2) is used, which is the

difference between the input and output SNR [39].
SNRimp = SNRyy — SNR;y, 5.2.2

Therefore, the SNR is calculated before and after applying the adaptive filter. The
signal-to-noise ratio SNR in decibels is computed by the ratio of the summed squared
magnitude of the signal to that of the noise. The input SNR is the ratio between the power

of input signal and power of noise at the input
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Ynx(n)? 5.2.3

SNR;;, = 101 =
Ry v my?

where x(n) is the noise-corrupted signal and v1 is the noise sequence. As there is no
information about the noise signal, it is not possible to calculate exactly the input SNR, it
can only be estimated from the sinusoid. The output SNR has to be higher than the input
SNR, which indicates the success of noise removal. A lower value of the output SNR
compared with the input SNR means that the filtering process introduces more noise
instead of reducing noise. The output SNR is the ratio between the power of the filtered

signal and power of the noise at output.

Yny(n)? 5.2.4

SNRout = 1010g10 Ze—(n)z
n

where y(n) is the output signal of the adaptive filter and e(n) is the noise signal. A
large value of the output SNR is desirable, which indicates that the adaptive filter can
remove a large amount of noise and is able to produce an accurate estimate of the desired
signal. The signal-to-noise ratio increases when the output noise power decreases.

Minimizing the output power causes the filtered signal to be perfectly noise-free [39].
5.3 Result and Analysis

First section of our code generates an input signal consisting of two sinusoids. The sample
rate was 1000Hz. Frequency of two sinusoids are 50Hz and 40Hz respectfully. A random
noise is generated with SNR value 20. After initial stage, various adaptive filter algorithms
(LMS, NLMS, FXLMS, FXNLMS, and proposed modified FXLMS) are used to the noisy

signal.

An input signal is generated which is a composition of two sinusoidal waves. The signal is
sampled at a rate of 1000Hz (samples per second), ensuring that the signal is well-
represented in the digital domain. The frequencies of the two sinusoids are chosen as 50Hz
and 40Hz, resulting in a complex signal that exhibits both of these frequencies. Typical
frequencies associated with underwater acoustics are between 10 Hz and 1 MHz. The
propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible
without penetrating deep into the seabed, whereas frequencies above 1 MHz are rarely used

because they are absorbed very quickly [40].
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To simulate real-world scenarios, random noise is generated. The Signal-to-Noise Ratio

(SNR) value is set to 20dB, indicating the ratio of the signal power to the noise power. This

creates a noisy version of the original signal, which is essential for testing the performance

of the adaptive filter algorithms in a noisy environment.

After this initial setup, several adaptive filter algorithms are applied alongside proposed

modified FXLMS algorithm. Figure (a) shows the original signal and a noisy version of it.
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Figure 20: Matlab simulated signal and noise.

adaptive filters (LMS, NLMS, FXNLMS, FXLMS and modified FXLMS) are

executed on the noisy input signal. These algorithms have been employed to enhance the quality

of the signal by attenuating the unwanted noise components. After processing the input signal using

each algorithm, the resulting output signals are visualized in figure (b).
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Figure 21: Simulation of different adaptive filtering algorithm and modified FXLMS.

This visualization provides a direct comparison of the outputs produced by the different
adaptive filter algorithms. Each algorithm's output is represented as a separate subplot
within figure (b), allowing for an easy and immediate assessment on which algorithm
produces the cleanest and most accurate output in terms of noise reduction and signal

preservation.
The convergence rates of each adaptive algorithm are presented below.

Table 3: Rate of Convergence of various Adaptive Filters.

Algorithm Rate of convergence
Least Mean Square (LMS) 0.9022
Normalized LMS (NLMS) 0.8841
Filtered X LMS (FXLMS) 0.82741
Filtered X NLMS (FXNLMS) 0.8287
Proposed FXLMS 1.007

The Modified Filtered-x Least Mean Squares (FXLMS) algorithm showcases a notable
advantage in terms of convergence rate, enabling it to swiftly adapt to dynamic and noisy
systems, resulting in a more efficient noise reduction process. Unlike the other adaptive
filter algorithms in consideration, the Modified FXLMS algorithm demonstrates a
remarkable ability to rapidly adjust its filter coefficients during the initial iterations. a
separate subplot within figure (b) are presented to visualize the comparisons of rate of

convergence.
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Figure 22: Rate of Convergence of various Adaptive Filters

In the attached table and graph below, displays the SNR performance of various adaptive
algorithms including LMS, NLMS, FXLMS, FXNLMS and proposed modified FXLMS
algorithm. Notably, the modified algorithm exhibits a distinctive advantage in terms of

Signal-to-Noise Ratio (SNR) enhancement.

Table 4: SNR Comparisons of various Adaptive Filters.

Algorithm SNR
Least Mean Square (LMS) 7.3912
Normalized LMS (NLMS) 8.0765
Filtered X LMS (FXLMS) 11.3217
Filtered X NLMS (FXNLMYS) 11.2546
Proposed FXLMS 11.8788
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Figure 23: SNR Comparisons of various Adaptive Filters.

Among the algorithms showcased, modified algorithm stands out by consistently delivering
a higher SNR value. While these algorithms have their own merits, our innovation seems
to have harnessed a unique capability for optimizing SNR, which holds great promise for

applications demanding superior noise reduction and signal fidelity.

These results not only validate the potential of our modified algorithm but also open doors
for further exploration and refinement. The apparent superiority in convergence rate and
SNR performance signifies a significant stride towards enhancing adaptive algorithms in

practical contexts where noise mitigation is pivotal.
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Chapter 6

CONCLUSION

6.1 Summary of thesis

This thesis embarked on a comprehensive exploration and comparative analysis of
various adaptive algorithms for system identification and noise cancellation. The aim was
to identify an algorithm that not only showcases impressive convergence rates but also
excels in enhancing the signal-to-noise ratio (SNR) of the system under consideration.
Through rigorous theoretical examination and simulation-based experimentation, the study
has successfully achieved these objectives and has shed light on the promising potential of
the modified FXLMS algorithm.

The comparative study revealed crucial insights into the strengths and limitations
of several popular adaptive algorithms, including the LMS, NLMS, RLS, and APA
algorithms. Each algorithm showcased unique attributes in terms of convergence speed and
robustness, laying the groundwork for a comprehensive understanding of their applicability

in different scenarios.

However, upon modifying the FXLMS algorithm, it became evident that the
proposed enhancements brought forth a remarkable leap in performance. The simulations
conducted under matlab simulated noise conditions consistently demonstrated that the
modified FXLMS algorithm outperformed its counterparts. The algorithm not only
achieved faster convergence rates but also exhibited exceptional noise cancellation
capabilities, leading to significantly improved SNR values. This superior performance can
be attributed to the carefully designed modifications that harness the inherent strengths of

the FXLMS framework while addressing its limitations.

The modified FXLMS algorithm has the potential to enhance the efficiency and
effectiveness of active noise control, thereby contributing to improved user experiences and

system performance.
6.2 Future Development

It is worth noting that while this thesis has made significant strides in evaluating
and enhancing adaptive algorithms, further research avenues remain open. Exploring

variations of the modified FXLMS algorithm, investigating its performance across a broader
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range of scenarios, and delving deeper into its theoretical underpinnings could provide

valuable insights for future studies.

In conclusion, by looking at theories, making changes to how the algorithm works,
and testing it in simulations, we have discovered that the modified FXLMS algorithm has
a lot of potential. This research adds to the growing knowledge about how to make filters
that adjust automatically and sets the groundwork for new ways to improve how signals are

processed and systems are understood.

As the field of these automatic algorithms keeps growing, the things we've learned
here can help other scientists and people who use these algorithms. They can use this
knowledge to create even better filters for lots of different uses. This will make signals

clearer, lower the effects of unwanted noise, and make systems work better overall.
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Appendix

Appendix I: Implementation code

% Generate input signal

s = 1000; % Sample rate (Hz)

= 0:1/fs:1; % Time vector (1 second)
= 50; % Frequency of sinusoid 1 (Hz)

1
2 = 40; % Frequency of sinusoid 2 (Hz)
= sin(2*pi*fl*t) + sin(2*pi*f2*t); % Input signal

% Add noise to the input signal
SNR = 10; % Signal-to-Noise Ratio (dB)

noise = randn(size(x)); % Gaussian noise

noise = noise / norm(noise); % Normalize noise

noise power = 10" (-SNR/20) * norm(x) / norm(noise); %
Calculate noise power

X noisy = X + noise power * noise; % Noisy input signal

o)

% Apply LMS algorithm

filter order = 64; % Filter order

mu Ims = 0.01; % LMS step size

[y Ims, ~] = lms(x noisy, x, filter order, mu lms); %
Apply LMS

% Apply NLMS algorithm

mu nlms = 0.01; $ NLMS step size

[y nlms, ~] = nlms(x noisy, x, filter order, mu nlms);
Apply NLMS

o\°

o)

% Apply FxLMS algorithm

mu fx = 0.01; % FxLMS step size

[y fx, ~] = fxlms(x noisy, x, filter order, mu fx); %
Apply FxLMS

% Apply FxNLMS algorithm

mu fxn = 0.01; % EFxNLMS step size

[y fxn, ~] = fxnlms(x noisy, x, filter order, mu fxn);
Apply FxNLMS

o\

[

% Apply fxlms kalman algorithm

kalman gain = 100;

[y fxkal, ~] = fxlms kalman(x noisy, x, filter order,
kalman gain); % Apply FxNLMS

$% Calculate MSE

% Calculate MSE for LMS
mse lms = mean((y lms - x')."2);

% Calculate MSE for NLMS




mse nlms = mean((y nlms - x')."2

% Calculate MSE for FxLMS
mse fx = mean((y fx - x')."2);

% Calculate MSE for FxNLMS
mse fxn = mean((y fxn - x')."2);

% Calculate MSE for FxLMS-Kalman

o

mse fxkal = mean((y fxkal - x'")

Q

% Plot signals

% plot of Original Signal
figure (1)

subplot(2,1,1)

plot (t, x,'k");
title('Original Signal');
xlabel ('Time (s)');
ylabel ("Amplitude');
%$axis ([0 1000 -3 3])
subplot(2,1,2);

plot (t, x noisy,'k');
title('Noisy Signal');
xlabel ('Time (s)');
ylabel ("Amplitude');

figure (2);
subplot(5,1,1);
plot(t, y 1lms,'k");
title('LMS'");
xlabel ('Time (s)");
ylabel ("Amplitude');
subplot (5,1,2);
plot(t, y nlms,'k");
title ('NLMS') ;
xlabel ('Time (s)');
ylabel ("Amplitude');

subplot (5,1, 3);
plot(t, y fx,'k'");
title ('FxLMS') ;
xlabel ("Time (s)');
ylabel ("Amplitude');

subplot (5,1,4);
plot(t, y fxn, 'k');
title ('FxNLMS'") ;
xlabel ('Time (s)');
ylabel ("Amplitude');

)

N2
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subplot(5,1,5);
plot(t, y fxkal,'k'");

SNR fx = snr norm(x, y fxkal);

title(['FxKalman Output (SNR: ', num2str (SNR fx),
daB) '1);

xlabel ('Time (s)'");

ylabel ('Amplitude");

figure (3)
subplot(2,1,1)
plot(t, y fx,'k'");
title ('FxLMS"');
xlabel ('Time (s)');
ylabel ("Amplitude'
%axis ([0 1000 -3 3
subplot(2,1,2);
plot(t, y fxkal,'k'");
title ('FxLMS-Kalman') ;
xlabel ('Time (s)');
ylabel ("Amplitude');

) ;
1)

o)

disp(['MSE for NLMS: ', num2Zstr (mse nlms)]);
disp(['MSE for FxLMS: ', numZstr (mse fx)]);
disp([’M for FxNLMS: ', numZstr (mse fxn)]);
disp(['M for FxLMS-Kalman: ', num2Zstr (mse fxkal)]);

o)

% Calculate SNR for each algorithm

SNR 1lms = snr norm(x, y 1lms);
SNR nlms = snr norm(x, y nlms);
SNR fx = snr norm(x, y fx);

SNR fxn = snr norm(x, y fxn);

SNR fxkal = snr norm(x, y fxkal);

[

% Print SNR for each algorithm
disp(['SNR for LMS: ', num2str (SNR 1lms),

disp(['SNR for NLMS: ', num2str (SNR nlms),
disp(['SNR for FxLMS: ', num2str (SNR fx),
disp(['SNR for FxNLMS: ', num2str (SNR_ fxn),
disp(['SNR for FxLMS-Kalman: ', num2str (SNR_ fxkal
dB']);

[

% Create a waveform plot for SNR values

algorithms = {'LMS', 'NLMS', 'FxLMS', 'FxNLMS',

Kalman'};

% Print rate of convergence (MSE) for each algorithm
disp(['MSE for LMS: ', numZstr (mse 1lms)]);
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snr_values = [SNR lms, SNR nlms, SNR fx, SNR fxn,
SNR fxkal];

figure;
hold on;
% Plot stem markers
stem(l:length(algorithms), snr values, 'filled',
'MarkerSize', 10);
% Annotate SNR values above the markers
for i = 1l:length(algorithms)

text (i, snr values(i) + 0.5, [num2str(snr values(i)),
' dB'], '"HorizontalAlignment', 'center');
end

set (gca, 'XTick', 1l:length(algorithms), 'XTickLabel"',
algorithms) ;

title('SNR Comparison of Adaptive Filters');

xlabel ("Algorithms"'") ;

ylabel ('"SNR (dB) ') ;

grid on;

ylim([min (snr values) - 1, max(snr values) + 1]);

hold off;

% Print SNR values

disp ('SNR values:'");

for 1 = 1l:length(algorithms)

disp([algorithms{i}, ': ', num2str(snr_values(i)),
dB'l]);

end

o)

% Create a waveform plot for MSE values

algorithms = {'LMS', 'NLMS', 'FxILMS', 'FxNLMS', 'FxLMS-
Kalman'};

mse values = [mse Ims, mse nlms, mse fx, mse fxn,

mse fxkal];

figure;
hold on;
% Plot stem markers
stem(l:length(algorithms), mse values, 'filled',
'MarkerSize', 10);
% Annotate MSE values above the markers
for 1 = 1l:1length(algorithms)
text (1, mse values(i) + 0.5, [numZstr(mse values(i))],
'"HorizontalAlignment', 'center');
end
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set (gca, 'XTick', 1l:length(algorithms), 'XTickLabel"',
algorithms) ;

title('Rate of convergence of Adaptive Filters');
xlabel ("Algorithms') ;

ylabel ("MSE") ;

grid on;

ylim([min (mse values) - 1, max(mse values) + 1]);

hold off;
% Print MSE wvalues
disp ('MSE values:"'");
for i = 1l:length(algorithms)

disp([algorithms{i}, ': ', num2str (mse values(i))]);
end

SHHA###4### End of Code ######
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